
© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 1

Rally Software Development Corporation and
Ken Schwaber-Scrum Alliance

Whitepaper

A CIO’s Playbook for Adopting the Scrum Method
of Achieving Software Agility

With
Dean Leffingwell

and
Hubert Smits

080805

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 2

Table of Contents

Introduction ...3

Overview of Scrum and Software Agility ..4
Scrum Principles...5
Scrum and Software Agility ...7

Preparing for Scrum ...8
“Scrumming” both the Software Process and the Organization ...8
The CIO’s Role as Organizational ScrumMaster for Continuous Improvement ..8
Caution: Change is Hard Work...9

A Playbook for Adopting Scrum..10
Play 0 - Overview, Assessment and Pilot Preparation..10
Play 1 - Pilot Project(s)...11
Play 2 - Organizational Expansion ...11
Play 3 – Achieving Impact..12
Play 4 - Measure, Assess and Adjust ..13
Play 5 – Expand and Win ...14

Organizational Impediments to Adopting Scrum...15
Exposing the Impediments with Scrum ..15
Characterizing Impediments ...15

Scaling Scrum ..17
Scaling the Organization: Scrum Teams of Teams...17
Coordinating Teams of Teams..18
Tooling Infrastructure for Enterprise Agility..19

Summary ..22

Bibliography...23

Appendix A - Resources ..24
Selected Reading ..24
Agile Training...24
Agile Tooling and Training ..24
Other ...24
Possible newsgroups for Scrum / Agile interested people are: ...24

Appendix B - The Agile Manifesto ...25
Principles behind the Agile Manifesto..25
Deliverables & Change...25
People & Communication...25
Feedback...25
Credit to agile leaders ...25

Appendix C - Scrum Metrics..26
Table 1 – Scrum Process Metrics (Hartmann, Stallings) ..26
Table 2 – Scrum Project Metrics (Rally Software Development Corp.)...28

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 3

Managing distributed
organizations and
effectively migrating to
service oriented
architectures demand
a new software
development approach

Introduction
The pressures of a truly global economy cause today’s business to increasingly rely on their ability to
produce software as a key competitive advantage. Whether it be software for managing manufacturing and
customer delivery processes or software improving the efficiency of day to day activities, software touches
virtually every facet of today’s businesses.

And yet for many organizations, software development practices remain as they were in the 1980s. Reliance
on prescriptive, plan-based, waterfall methods is common despite mountains of evidence that these
practices often fail to achieve real value delivery in a timely fashion, and so hamper our company’s
responsiveness to fast-changing customer requirements and market conditions. And it’s not getting easier.

Today’s IT organizations must also effectively coordinate globally distributed software development teams
while re-factoring legacy applications into more flexible, service oriented architectures. Clearly, we need a
new approach for managing and developing software to remain competitive.

To address these challenges, a number of more agile and adaptive software
development techniques are being adopted which allow organizations to deliver
higher quality software more quickly. Scrum is one such proven method that has
seen widespread adoption in many software organizations. This whitepaper
describes how a CIO or other executive manager can implement Scrum on an
organization-wide basis, including scaling across larger applications and teams of
teams – the challenges he or she will face as well as the rewards – and provides a
playbook for adopting Scrum in enterprises where software, and lots of it, is the

key to competitive success in the marketplace.

This is a “playbook” of ideas about implementing Scrum within an enterprise. It is called a playbook rather
than a manual because each organization is unique. Scrum’s implementation within one enterprise will be
significantly different from its implementation in another. The types of impediments, things that need
changing, the difficulty of change, and the people who will be doing the changing are different, so the
timetables, the priorities, and the effort will be different as well.

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 4

Figure 1: An Empirical Process Model that
Characterizes Scrum

Overview of Scrum and Software Agility
On the surface, Scrum is a very simple process: a software management technique that has a relatively
small set of interrelated practices and rules, is not overly prescriptive, can be learned quickly and is able to
produce productivity gains almost immediately.

Scrum naturally focuses an entire organization on building successful products. It delivers useful features at
regular intervals as requirements, architecture, and design emerge, even when using unstable technologies.
You can implement Scrum at the beginning of a project or in the middle of a project, and Scrum has saved
many development efforts that were in trouble.

Scrum works because it optimizes the development environment, reduces organizational overhead, and
closely synchronizes market requirements with early feature delivery. Based in modern process control
theory, Scrum produces the best possible software given the available resources, acceptable quality levels,
and required release dates.

At its core, Scrum is an iterative, incremental process for developing any product or managing any work that
produces a potentially shippable set of functionality at the end of each iteration. Scrum’s attributes are:

 Scrum is an agile process to manage and control development work.

 Scrum is a wrapper for existing engineering practices.

 Scrum is a team-based approach to developing systems when requirements are changing
rapidly.

 Scrum controls the chaos of conflicting interests and needs.

 Scrum improves communication and maximizes cooperation.

 Scrum detects and removes anything that gets in the way of developing and delivering products.

 Scrum is a way to maximize productivity.

 Scrum scales from single projects to entire organizations, and has managed development for
multiple interrelated products and projects with over a thousand team members.

 Scrum is a way for everyone to feel good about their job, their contributions, and know they have
done the very best they possibly could.

While describing Scrum practices in
detail is outside the scope of this
whitepaper (see Schwaber 2004
and Schwaber 2002), the method is
characterized by the production of a
Product Backlog where requested
features are organized by their
priority (Figure 1). A Product Owner
is responsible for approving
changes to the product backlog.
Implementation occurs in roughly 30
day iterations called Sprints which
focus on the top priorities in the
Product Backlog. The goal of each
Sprint is to deliver a potentially
shippable product increment. During
the Sprint, checkpoints are observed in a daily “Scrum” meeting which communicates the progress and
activities within the team and shares issues that may be “blocking” progress for an individual or the team.
This allows the ScrumMaster to determine progress against the Sprint commitments and advise on
midcourse corrections to assure successful completion of the Sprint.

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 5

Scrum Principles
While those are some of the mechanics of Scrum, more importantly, the CIO should understand that Scrum
is guided by a few key principles:

 The belief that effective software development is best implemented via an empirical rather than
planned process;

 The belief that, once organizational impediments are removed, a self organizing and self
managing team will naturally deliver better software than would otherwise be the case;

 The premise that you can deliver the most valuable software within a prescribed time and
budget, and yet you cannot definitively predict the exact functionality of what a team will deliver.

Scrum’s assertion is that recognizing these key principles frees an organization from many of the constraints
that prevent effective software development. However, CIOs must also recognize that these key principles
imply potentially significant change to the organization that chooses to adopt them. Since these principles
form the underlying basis of Scrum, each merits some additional discussion.

Adopting an Empirical vs. Planned Process
Scrum believes that most systems development today has an incorrect philosophical basis, that is, through
more and better planning we can achieve more predictable, higher quality results. Scrum recognizes that the
applications development process is an unpredictable and extraordinary complicated process (think
hundreds of thousands of manually created lines of code) whose value can only be measured empirically.
After all, the application under development has likely not been developed by any team anywhere, ever,
much less by your team in your context, so cookbook, step-by-step planning approaches cannot effectively
address the inherent unpredictability.

Scrum defines the systems development process as a loose set of activities that combines known, workable
tools and techniques with an empowered team that is tightly coupled to the Customer/Product Owner. Since
many of these activities are loose, controls are applied – such as constant inspection and demonstration –to
manage the risk and provide real time, empirical evidence of the state of the project at every point in time.

The Scrum tradeoff is simple:

Know where you are every day with Scrum
- or -

Think you know where you are on your well-formed plan
and discover that you are very wrong, very much later

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 6

Eliminate the Impediments So the Team Can Do its Job
Over the years, a company’s organizational processes and software development practices typically gain
weight until building software is often quite a difficult endeavor. When Scrum is implemented, these
“organizational impediments” to effective software delivery become quite obvious, for they get in the way of
the team’s ability to deliver on the rapid iterative, incremental nature of Scrum. Removing or changing these
processes and practices may show that a major change project must be initiated, driven and monitored by
the CIO or executive champion (more on this topic later).

Moreover, in Scrum, the team is the thing. After all, they are the ones who actually design, develop and
deliver the application, so optimizing their performance by eliminating obstacles optimizes the business’s
performance in delivering value to its users. Management does their job when they eliminate impediments.
The Team does its job when it meets its commitments as described in each Sprint’s Backlog.

In other words, in Scrum, the team is both empowered and accountable to deliver the goods. The team does
their job when they self-organize, self-manage and self-achieve the objectives of the Sprint. For many
organizations, this turns things upside down. The hierarchical-technical-management-directive approach is
essentially eliminated with Scrum. The Product Owner now sets the objectives and priorities, the team
figures out how to achieve them, and no one need tell them how to do that along the way.

Better, Though Less Predictable Outcomes vs. False Confidence
Scrum starts with the premise that creating software is a complicated business operating in a highly-fluid and
technical environment, and that no one can reliably predict or definitively plan exactly what a team will
deliver, when they will deliver it, and what the quality and cost will be. Instead, Scrum understands that
teams can estimate these items, communicate the estimates, negotiate a near term plan according to
various risks and then adjust as they proceed. The agreement is that the team will deliver the best possible
software given the circumstances, and that following any cookbook approach won't improve the definition of
"best,” and will only hinder the team’s responsiveness to the real-world complexity and unpredictability that
exists.

Historically, ignoring this philosophy creates a number of organizational problems:

 Management actually believes that it can predict the cost, delivery schedule, and functionality
that will be delivered, and plans accordingly.

 Developers and project managers are forced to live a lie: they pretend they can plan, predict and
deliver. They build one way, but must pretend they build another way. In the end, they are
essentially without controls.

 By the time the system is delivered, it is often irrelevant or requires significant change. A key
cause is that high iteration costs limit our visibility into the usefulness of what the team is actually
developing, until it is too late.

Recognizing these realities is not without its challenges – for example, what manager wants to tell their
executive they don’t know exactly what the team will deliver on the given date? But the benefits of this
approach are that organizations are truly empowered: the business is finally free to produce better outcomes
for its end users and will now do so more quickly, clearly creating competitive advantage for the business.

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 7

Scrum and Software Agility
Scrum has been in use since the mid 1990s and has now been applied to thousands of projects worldwide.
In addition to Scrum, several new iterative methodologies have also received attention during this period.
Like Scrum, each had a combination of old ideas and new ideas, but they all emphasized:

 Close collaboration between the development team and business experts;

 Face-to-face communication (as more efficient than written documentation);

 Frequent delivery of new deployable business value software;

 Tight, self-organizing teams; and

 Ways to craft the code and the team to allow for continuous adaptation to changing
requirements.

In 2001, various originators and practitioners of these methodologies, including Scrum leaders, met to
understand what it was they had in common. They picked the word "agile" for an umbrella term and crafted
the “Manifesto for Agile Software Development” (Appendix B), its most important aspect being a statement of
shared values:

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

The Manifesto struck a chord and it led to the start of thousands of new agile projects. The results and
experiences of these projects further enhanced the techniques applied by the multiple forms of agile
practices. As with any human endeavor, some succeeded and some failed. But what was most striking about
the successes was how much both the business people and the technical people loved their project. This
was the way they wanted software development done – and the customers and end users agreed.
Successful projects spawned more enthusiasts and like a successful Sprint, the virtuous agile cycle
continues today.

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 8

Preparing for Scrum
Once CIOs have a basic understanding of the business and cultural benefits of Scrum and agility, they often
want to take the next step and see how this development method can improve their organization.

During its first fifteen years of life, most Scrum implementations have been driven bottom-up. In other words,
a project team would try Scrum and the results would be impressive. Another team would try it, and pretty
soon Scrum projects appear throughout the organization. More recently, however, many organizations want
to implement Scrum top-down as part of a directive to speed the company’s responsiveness and to improve
productivity.

Since Scrum is all about team empowerment and “letting the team decide,” a top down implementation
requires thoughtful consideration and preparation, as we will describe in this section.

“Scrumming” both the Software Process and the Organization
Many organizations have tolerated inefficiencies and impediments for years; Scrum quickly identifies these
and requires their resolution. Fortunately, the increased productivity and value derived from Scrum projects
makes the effort worthwhile, but it is still an effort.

To implement Scrum, an organization has to take on two pieces of work. Firstly, projects where development
teams are taught to build software using Scrum; and, secondly, removing the impediments to optimized
creation and delivery of software that the Scrum teams encounter. The first work improves software delivery;
the second remedies impediments to ROI and productivity identified in the first.

Both pieces of work are challenging and require hard work above and beyond the actual development of
software; a full Scrum implementation may take up to two years. No matter the intensity or commitment by
management, this timetable cannot be rushed because the core of the project is organizational change.

Scrum’s daily and monthly inspection and adaptation cycles make everything visible - the code, the process,
and the company’s impediments. Projects using Scrum regularly identify impediments that must be recorded,
evaluated, prioritized, and acted upon.

The speed of Scrum implementation is directly related to the:

 Degree of change required within the organization;

 Urgency within the organization to improve its software development and delivery process;

 Effectiveness of leadership within the organization.

The CIO’s Role as Organizational ScrumMaster
for Continuous Improvement
In Scrum, the ScrumMaster is responsible for making sure a Scrum team lives by the values and practices of
Scrum. The ScrumMaster protects the team by making sure they do not over-commit themselves to what
they can achieve during a Sprint and the ScrumMaster continuously removes impediments that prevent the
team from successfully delivering the Sprint results.

At the organizational-impediment level, this job falls to the CIO or other executive
sponsor, whose job it is to work outside the team and eliminate the organizational
barriers that may prevent the success of an agile development model.

The job of the Organizational ScrumMaster is to notice, identify, and work within the
organization to cause change that removes impediments. That is, the CIO as Organizational ScrumMaster is
primarily a change agent, and the list of impediments is their Product Backlog. The CIO’s Scrum sponsor –
acting as “Product Owner” for these impediments – sets the priorities of these items. This Product Backlog of
impediments is worked on by the organization through teams using the Scrum process, with deliverables
being impediment removal. This organizational change backlog starts during the pilot projects and continues
as long as needed changes are identified during the inspect-and-adapt cycle of Scrum.

The CIO is the
ScrumMaster for
Organizational
Change

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 9

The Organizational ScrumMaster periodically meets with all of the ScrumMasters, product owner and
sponsor to further develop the Organizational Change Product Backlog. Teams are formed that drive
changes to the organization within a Sprint. At the Sprint Review, the change is reviewed as well as the
metric that can be used to monitor progress in implementing the change. In this way, the CIO engages in a
process of continued organizational improvement all aimed specifically at increasing the productivity and
quality of the software development teams.

Caution: Change is Hard Work
Change is hard work and there is no way around the hard work. Organizations implementing Scrum
sometimes misidentify the hard work as someone’s fault, something that can be made to go away if the
group at fault would just “clean up their act”. This type of organizational blame can kill a Scrum
implementation, and with it the organization’s ability to build better software. When something is painful,
when something goes wrong, recognize this is just part of the change that is occurring; it is an opportunity for
everyone to get together to figure out how to solve the problem, together.

Scrum cannot be planned for and implemented with checklists, procedures, and forms. Scrum is just a
simple framework that will identify everything in an organization that gets in the way of optimally building
software. The work to manage and remove these impediments represents the difficult part of implementing
Scrum, and it is different for every organization, since every organization is different.

Nobody likes pain and difficulty; many of the impediments are so inherent to an organization’s way of
thinking and operating that they are very difficult to remove. No amount of planning up front will mitigate this
difficulty; it will only help alert everyone to the hard work that must be done to become a world-class
competitor. Scrum requires that senior management be vitally involved in impediment triage and removal,
and therefore requires that the CIO adopting Scrum become the leading agent for change.

In this way, the CIO engages in a process of continued organizational improvement, all aimed at increasing
the productivity and quality of the software teams. It’s not easy, and the leadership the CIO provides will be a
critical factor in success, as the following note from Ken Schwaber to a CEO illustrates:

From: Ken Schwaber
To: XXX XXXXX, CEO for XXXXXXX Corporation

“On one hand, Scrum offers some very attractive possibilities – increased productivity, a better
working environment, increased competitiveness, and a higher quality product. On the other hand,
it is hard to implement. The amount of change engendered by a Scrum implementation is significant
and difficult.

Even though the change is difficult for the developers and customers (product owners), they have
immediate payback through increased job satisfaction. This helps them through times of stress and
anxiety. Middle management, however, is stressed without immediate reward. They are asked to help
transition an organization from traditional approaches to leaner approaches without a clear vision
of a personal end point … what will I do and where will I fit into the new organization. This
question is particularly difficult and fraught with danger since middle management will be
fashioning the new organization. The potential for conflict and politics is daunting.

My experience with top-down, enterprise implementations of Scrum has led me to believe that the
differentiator between success and failure is you. Your ability to vision the future and help
communicate it to your management, your ability to patiently guide them through the change, and
your ability to assure your middle management of their value and form them into a team will
differentiate your ability to absorb the change and realize the benefits, or not.”

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 10

A Playbook for Adopting Scrum
Once you decide to implement Scrum within your organization, a journey begins with a belief that the effort
will be rewarded with a more effective software process and a more responsive and competitive company. It
also recognizes that a significant amount of organizational change is now in the forecast.

As the CIO contemplates this undertaking, an understanding of organizational behavior leads to a rational
set of steps for achieving substantive change. These include:

 Finding an evangelist and local sponsor;

 Taking small initial steps that test the waters;

 Reflecting on successes and failures, then moving forward, step by step.

This next section describes some typical examples of how you might implement Scrum throughout your
organization; a “playbook” that gives sample techniques you can apply to accomplish the requisite change.

Play 0 - Overview, Assessment and Pilot Preparation
The objective of the first play is to prepare the playing field for the activities ahead by a) assessing the
organizations readiness for agility, b) providing initial training for the early participants and c) building the
Product Backlog for the initial projects. The details of this play are as follows:

Overview and Assessment
Description: Two day working session consisting of

 Scrum Aptitude Test – exposes management to the types of change that happen with
Scrum, and helps them determine if they want to proceed.

 Scrum presentations – raise general awareness and present concepts to entire organization.

 Assess organizational readiness and define next steps.

 Define plans; identify potential pilots, schedule training, and resource the pilot project.

 Dinner with senior management to review next steps.

Duration: 2 days

Support: External

Pilot Preparation
The organization is ready to proceed with the training and structure needed to support the first pilot project.
Activities in this phase include:

ScrumMaster training
Description: Train ScrumMasters to run the pilots

Duration: 2 days

Support: External

Product Owner training
Description: Train Product Owners to maximize ROI using Scrum.

Duration: 1 day

Support: External

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 11

Establish Metrics
Description: Review and modify metrics that monitor the use of Scrum within the organization and
define the value derived from the pilots. Establish core Scrum process and project metrics.

Duration: 1 week

Support: External

Establish Change Product Backlog
Description: Establish product backlog for tracking and evaluating impediments that arise during the
pilot projects. This will be the basis for change action within the organization.

Duration: 1 day

Support: External

Play 1 - Pilot Project(s)
The objective of this play is to experience Scrum on one or more real projects in order to demonstrate the
positive benefits of improved software agility within the organization. One or more pilot projects are now
executed. ScrumMasters and management closely watch the pilots to identify organizational obstacles and
impediments to Scrum. When these impediments are identified, they are fixed on the spot where possible, or
are simply recorded in the Organizational Change Backlog and categorized for later attention.

Pilot projects
Duration: 3-6 months

Support: External / Internal ScrumMaster

Description: Run 3 to 6 iterations of the pilot projects. Pilot projects deliver increments of functionality
and identify impediments to optimized software development. Assess and adjust plan, evaluate and
prioritize impediments.

Retrospective
Duration: 2 day

Support: External / Internal ScrumMaster

Description: Review pilot projects, metrics, and impediments. Assess what went right, what could be
improved. Identify the ROI. Assess impact on business operations, including relationships within
organizational departments and with customers.

Re-planning
Duration: 1 day

Support: External / Internal ScrumMaster

Description: Modify master plan for Scrum implementation; keep it high level and let project plans
and the organizational change plan be driven by their own specific product backlogs.

Play 2 - Organizational Expansion
Based on successful pilots, the objective of this play is to expand the usage of Scrum and its benefits to a
significant subset of the development organization. By now, there is an understanding of what beneficial
practices are embedded, what impediments stand in the way of broader adoption and where further training
is required. For example, the following broader training programs may now be effective:

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 12

 ScrumMaster training: Before scaling the implementation to additional and larger projects you
must be increase the number of Scrum Masters. Candidates with appropriate skills should now
be recognized in the organization. ScrumMasters who will be leading Scrum of Scrums (see
below) can now be trained in advanced skills like Team Facilitation and Metrics Collection.

 Product Development Training: We optimize the hand-off between analysts and development
teams when these two roles use a common approach. An often seen approach is to adopt Lean
or Toyota style product development methods. The references list a number of books that
provide information on these topics.

 Engineering Training: The engineering teams involved in agile projects will have learned where
they need skills to operate in a more agile manner. Training in Extreme Programming (XP) skills
like Test Drive Development etc. may now be warranted. (Beck 2004)

 Scrum/Agility training: a successful implementation of Scrum will largely depend on a common
vocabulary of all people involved. This can be achieved through 2 – 4 hour introduction courses
for 30-50% of the organization.

In addition, you may apply other activities to increase the visibility and level of acceptance of Scrum in the
organization:

 Information radiators: Communicate the state of Scrum projects through simple and powerful
information radiators, like whiteboards showing the tasks (Task Board), Product and Release
Backlogs and the project and program BurnDown charts.

 Reading: A suggestion of articles and books can be provided to all people in the organization to
encourage further knowledge expansion.

 CIO led seminars/brownbags: The change leader(s) should communicate often and openly
about what is happening in the organization. Informal meetings, like brownbags and pizza hours
tend to have a positive impact on change.

 Chats/war stories/feedback from the pilot(s): The results from the pilot projects should be
available to everybody. This will increase discussion and involvement through all levels of the
organization.

Play 3 – Achieving Impact
As the pilot projects have proven that real value will be delivered through an agile approach to software
project management, the objective of this play is to achieve a more significant impact on the bottom line
which can only be demonstrated through more and larger projects. Through the previous plays the
organization has collected sufficient explicit and tacit knowledge to be able to tackle these with a high
probability for success. At this point, as much as 25% of the organization should be involved in the
implementation of Scrum.

Effective change should now be occurring inside and outside the development organization. Inside
development, the work is best done by the development team. Outside the development teams, the work of
eliminating impediments is directed by the Organizational ScrumMaster and is implemented by the affected
departments.

Development Projects
Duration: Forever

Support: Internal

Description: Development projects monitored by ROI.

Change Projects
Duration: Most work in first 1 to 2 years; then, as needed

Support: Internal

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 13

Description: Organizational change projects within various departments drive out emerging and
changing impediments.

Assess and Adapt
Duration: Every Sprint

Support: External / Internal ScrumMaster

Description: Review qualitative and quantitative metrics. Add additional metrics and review capture
processes whenever a surprise has occurred.

Play 4 - Measure, Assess and Adjust
The objective of this play is to assess the organization’s progress and to establish a broader set of metrics to
serve as a basis for further expansion. The CIO should be aware that the upcoming discussion of metrics
may be both controversial and entertaining as many of the traditional metrics that might be in place prior to
Scrum adoption (example: measures of “document completeness”) are no longer relevant. Fortunately,
Scrum and agile practices are indeed accountable and measurable and practitioners are converging on a set
of metrics that provide qualitative and quantitative feedback at both the process and project level.

But before entering this discussion, a key distinction needs to be made between many traditional software
development processes and Scrum and agile:

The primary metric for agile software development is whether or not working software actually exists,
and is demonstrably suitable for use in its intended purpose. In Scrum, that key indicator is
determined empirically, by demonstration, at the end of every single Sprint.

This primary measure of software quality and productivity is the essence of agile development. So with
Scrum, you cannot be very far off your objective without knowing that you are. All other metrics are
subordinate to that objective and its constant mantra of “delivering working software more frequently”.

At this point in the Scrum adoption game, a significant part of the organization is now operating in an agile
manner. Sprint results of the initial projects are the primary measure of the effectiveness of the new team
behaviors and their new processes. This data should be published and analyzed.

Moreover, now is the appropriate time to define a set of secondary metrics used to guide your organization
on how it implements Scrum. In so doing, there are two types of metrics that may be applied:

Process Metrics – primarily qualitative indicators on the effectiveness of the teams and organization
in adopting Scrum. These include items such as effectiveness of the teams in managing the Product
Backlog, effectiveness of Scrum processes such as the Scrum daily meeting, Sprint Planning
meeting, etc. In cooperation with the ScrumAlliance, Hartman and Stallings have developed a
template of process metrics that can be used by any organization that is implementing Scrum. These
metrics appear as Table 1 in Appendix 2.

Project Metrics – At the project level, an additional set of metrics may be applied to measure the
results for a particular Scrum team and the service, component or system that they are accountable
for. These may include some traditional metrics such as defect count, percentage of code with unit
test coverage, percentage of code covered by automated regression tests, etc., as well as Scrum
specific metrics such as number of user stories finished and demonstrable at the end of each Sprint.
An example set of these metrics appears as Table 2 in Appendix 2.

A Note on Quality and Scrum
Customers often pressure development organizations to deliver features faster than is feasible. Some
organizations accommodate this by reducing the quality of the product, dropping re-factoring, cutting test
efforts and other solid engineering practices. This is not supportable within Scrum practices since the system
or product is a corporate asset, refined continuously and objectively measured, not a one-time project asset.
Engineering organizations that succumb to this pressure eventually build “design dead” systems that can not
be effectively maintained or enhanced. The organization suffers the huge cost of a substantial rewrite and re-

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 14

release of the code base. To avoid this, only the senior levels of an organization can make an asset decision
for reducing quality.

Play 5 – Expand and Win
With these activities behind the organization, and with a defined set of metrics to guide and evaluate future
progress on an organization-wide basis, it is now time to expand the use of Scrum across the entire
organization. The activities in this phase of the implementation are focused on the further scaling of Scrum
within the organization.

In steps of perhaps 25–30% of head count, the remaining teams in the organization are introduced to Scrum.
Existing practices are further refined and shared between the teams in order to reach an organizational
inculcation of the agile practices. Only now can the strict rules with which Scrum operates be adjusted to
better match the need of the organization. Customers can be invited to participate in the implementation
through training as product owners or ScrumMasters. This phase will continue until all teams are involved in
Scrum, and Scrum’s inspect-and-adapt mechanisms will address further enhancement of your processes
and practices.

At this point, the organization will be receiving the substantial productivity and business and cultural benefits
of Scrum.

Before we proceed to Scaling Scrum to the largest project environments, however, we need to look at the
types of organizational impediments that can prevent effective Scrum practices.

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 15

Organizational Impediments to Adopting Scrum
Applications developed in any organization are intended to optimize the ability of the company to meet its
business mission. However, over the course of time, organizations evolve in ways which are not always
conducive to the productivity of the software team that develops and maintains those applications. Indeed,
some organizations have evolved to the point where the software practices are largely dysfunctional and –
despite repeated efforts to improve them – the organizational structure, policies and strictures prevent
effective change. This section describes the source and nature of these impediments to better arm the CIO
for the work ahead.

Exposing the Impediments with Scrum
The very nature of Scrum; its incessant demands for quality software to be delivered more quickly; its
continuous demand for working with end users to assure effective implementation, and its continuous
inspection and adaptation mechanisms expose dysfunctional practices and “blocking issues” very quickly.
This effect becomes all the more pronounced when Scrum is also used as a process to implement and scale
Scrum in the organization.

You cannot identify all impediments up front as they are embedded in the organization
and therefore too familiar to be identified easily. Only when you start using Scrum do
they become obvious. The plan for implementation emerges as the evidence of what
needs to be changed and the organization's willingness to make the change emerges.

Characterizing Impediments
Impediments will generally be encountered in four areas:

Scrum Process Itself – what impediments are occurring that get in the way of the Scrum process?

People Practices – what people practices are getting in the way of developing, distributing,
supporting and using products to maximize the fulfillment of everyone involved?

Product Engineering Practices – what practices are impeding the optimization of return on
investment, or maximizing the mission of the organization from a product perspective, and what
impediments are there to optimized product development and delivery?

Organizational Issues – what systemic organizational issues - that lie clearly outside the team’s
control - are preventing the teams from delivering software to its users more quickly?

We want separate categories in the Organizational Impediment Product Backlog because these require
unique skills to resolve. In addition, they should be prioritized as to impact, and some thought should be
given as to who best in the organization can best resolve the impediment.

Table 1 below shows examples of impediments found in organizations adopting Scrum. This list might
provide a starting point and an early warning system for some of the impediments your organization is likely
to encounter. But again, every company is different and every implementation is different, so fortunately or
unfortunately, the Scrum process will assuredly discover some new impediments for the CIO to deal with!

It’s impossible to
identify all the
organizational
efforts up front

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 16

 Impact Cost Owner

Scrum Process

People arrive late to daily Scrum and do not support basic discipline

Scrum meetings take too long – team is bored and considers the time unproductive

ScrumMaster dictates design decisions or micromanages

Teams are too large for effective daily Scrum and Sprint planning

Teams do not report task remaining time for BurnDown analysis

People Practices

Individuals interrupted and tasked to work outside the Sprint

Teams isolated in cubicle and not in open Scrum area

Team members not accountable for personal Sprint commitments

Individuals are multiplexed across too many projects and teams

Product Engineering Practices

Cross-functional resources for definition, design, implementation and test are not present on the
team

Sprints do not fully implement and test potentially deployable increments of customer valued
features

Product owner not easily available/not integral to team

System integration is not forced at each Sprint

Product owner won’t split up massive product backlog items to fit within a Sprint.

Teams have ineffective resources for automating builds and integrations

Features loaded into Sprint after Sprint begins

Organizational Issues

Software process police regulate to ineffective processes

Management assumes fixed price, fixed time, fixed functionality delivery posture

Software Test/and or System QA is separate organization and is not integrated with team

Organization rewards individual, rather than team behavior

Existing rules or software capitalization demand adherence to document-driven, waterfall
approaches

Teams not co-located to maximum extent feasible

Teams cannot make small organizational, space and expense decisions needed to do their job

Legend: Impact of this impediment to the project (0-9, 0 low, 9 high),
Cost to resolve this impediment (0-9, 0 low, 9 high)
Owner: Point in an organization for resolution: C – CEO/CTO/COO/CFO, V – VP, D – Director., P – Product
Management, E – Engineering Management, T – Team

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 17

Figure 2: A System Being Built by Three Scrum Teams
Over Three Sprints

Scaling Scrum
The business benefits of Scrum and agility are most readily achieved with small, co-located and integrated
teams, ideally consisting of eight people or less (including Product Owner, ScrumMaster, Developers and
Testers) and where each Scrum team owns a specific product or application that they can define, develop,
test and deliver without much outside help.

Inevitably, however, the success of Scrum will lead to its application to larger programs, systems of systems,
and applications that take many, likely distributed, teams to develop and deliver. Fortunately, Scrum has
been proven in projects consisting of many hundreds of developers so Scrum does scale to the challenge of
the larger software enterprise. Doing so, however, brings about a unique set of challenges that must be
addressed, specifically:

1. Scaling the organization: Scrum teams of teams

2. Tooling infrastructure for enterprise agility

3. Coordinating teams of teams

Each of these challenges is addressed in the sections below.

Scaling the Organization: Scrum Teams of Teams
Consistent with its less is more philosophy, Scrum has a very small number of rules. However, most of the
rules that do exist are fixed and relatively inviolate. One basic rule is the team consists of eight or fewer
members that are co-located in a common seating area. This is the most effective and productive model as it
a) supports the requirement for constant informal communication amongst the team members, b) fosters a
high degree of esprit de corps and c) allows for a mutual commitment to the goals of the Sprint amongst
team members who actually know each other and have to work together every day. In addition, certain
Scrum mechanisms, such as Sprint planning and the Daily Scrum meeting can breakdown very quickly as
the team size gets beyond 8-10 individuals.

Scaling Scrum to larger applications leaves this key principle in place. So, scaling to an application involving
300 people involves organizing around 30 Scrum teams. As previously discussed, the team’s complement
must be fully rounded and capable of developing potentially shippable pieces of functionality at every Sprint.
For most organizations, this requires reorganizing teams around product features, services, components or
subsystems, rather than by individual role (e.g. developer pool, test resources, etc.). While we discussed this
organizational impediment earlier, we see it gets compounded as our project’s size increases.

Organization Follows Architecture
Moreover, we cannot readily form Scrum teams
without understanding how each individual team
can relatively holistically deliver end user
functionality. In turn, this mandates that we
decompose the application architecture into
components or subsystems that have conceptual
integrity and can deliver business value on their
own1. Scrum provides for this architectural
factoring activity in the Sprint staging phase, and in
early Sprints, by the front-running Scrum teams.
This method works particularly well in a period of
Scrum expansion and rollout for a large project.
Here, the front-running teams build proof points of
customer value while they simultaneously factor

1 This level of sharing and communication can indeed be a challenge when implementing service oriented architectures, as the
existing organization likely mirrors the prior architecture of independent silos of applications whose department owners were not
overly-required to cooperate to deliver more flexible services to users, as now becomes the case.

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 18

Figure 3: System of Three Subsystems with
System Level Sprints

the application architecture to accept additional teams, whose Scrum training will likely be occurring at about
the same time. As each new team is formed, its role in the larger system becomes clear and a picture like
Figure 2 emerges.

Coordinating Teams of Teams
Of course, the presence of a large number of teams brings significant challenges in coordinating and
communicating across teams, and also implies that there will likely be a number of issues at the system level
which require the same daily and monthly inspection practices applied at the local team level. Experiences
with scaling Scrum to larger teams have evolved a small set of useful practices for coordinating disparate
teams and addressing the larger challenges of Sprint planning, release planning and tracking system level
integration and test activities.

Daily Communication: Scrum of Scrums
In the same fashion that Scrum mandates daily communication in the daily Scrum, larger and distributed
teams typically coordinate their activities in a daily Scrum of Scrums. In this meeting, team leaders from
each component team use the same format as the single team daily meeting:

1. What did my team do yesterday to advance the objectives of the Sprint?

2. What will my team do today?

3. What impediments are present that could keep my team from meeting its commitment to the
Sprint?

Ideally, this meeting occurs immediately after the individual team’s daily Scrum. When teams are dispersed,
it often occurs by telephone with the time of day selected to maximize participation amongst the scrum of
scrum team members.

System Level Release Planning and Tracking
Figure 2 might imply that it is a fairly straightforward matter to divide the organization into feature, service or
subsystem teams, empower these teams to do their jobs, and that a wonderfully integrated system will
naturally occur. Experience has shown that this is
unlikely. For even when the individual teams are
empowered to meet both the needs of the Sprint
and coordinate integration between the
teams/subsystems, a larger set of challenges is
present. That is the challenge of building a system
holistically, where we implement ant test our
integrations across all subsystems, where
subsystems work together to meet broader
customer requirements and that the overall system
meets its quality, performance and reliability
requirements.

To address these challenges, many teams have
added a technical lead role played at the system
level. Architects, team leads, product managers
and quality assurance personnel will often grow
into an additional Scrum team to think and act at
the system level. Moreover, they can also apply
the Scrum process at the system level to set Sprint
objectives and create backlog items of forced
system integrations, system level demonstrations,
quality checkpoints, trial distributions and other
milestones to assure that the system stays on track.
In so doing, the picture in Figure 3 starts to emerge.

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 19

Tooling Infrastructure for Enterprise Agility
Even with this level of structure and coordination, larger projects and distributed teams may still find
themselves lacking the internal and cross-team coordination and project visibility required to reliably deliver
software in rapid, fully-tested iterations. While Scrum provides a proven framework for the project
management aspects of software development, it does not prescribe specific software engineering practices
nor recommend specific tooling to support the Scrum process. Scrum’s philosophy in this regard is “keep it
simple and let the teams decide.”

Indeed, for the ideal team of less than ten co-located persons, the prime project management artifacts used
to plan the Sprint and communicate status of individual features, tasks and team progress can often be
managed using a spreadsheet developed and maintained by the ScrumMaster. The engineering artifacts for
requirements, test cases and defects may be equally lightweight and written on index cards, whiteboards or
maintained on a team wiki.

People and Communication
However, scaling Scrum practices to distributed teams, and teams of teams, presents
special communication challenges. Cross-team coordination of how to implement
shared requirements, track feature status and identify blocking issues becomes a
primary concern. In these cases “a mechanism for frequently synchronizing their work
must be devised and implemented. Also, a more detailed product and technical

architecture must be constructed so the work can be cleanly divided across teams.” (Schwaber 2004)

While traditional project management tools may have worked for showing idealized task start/stop dates and
performing - perhaps fruitless - critical path analysis on long waterfall projects, these plan-driven activities
lose their relevance when working in short iterations where the entire team focuses on driving the few
highest priority features to acceptance. Instead of one person maintaining a separate task database that is
decoupled from the day-to-day artifacts the team is actually planning and implementing (e.g. user stories and
tests), larger programs need a real-time collaboration environment that supports the natural signaling
occurring among team members as they advance a feature from the Product Backlog into development,
testing and integration. To emulate the co-located team, this agile project management environment must let
everyone quickly see and update where a feature is in its lifecycle, how much effort remains before its
completion and what specific issues are blocking its progress.

Besides needing new ways to plan and track our iterations, the capabilities of tools applied to defining,
organizing and sharing our system artifacts have new demands as well. Managing requirements, their
acceptance tests and defects calls for support that is horizontal across the lifecycle activities inside a Sprint,
not vertical with deep silos of artifact information that are poorly related to the commitments the teams have
made. In fact, with rapid iterations, it is really the relationships between these artifacts that are the primary
concern to the teams. After all, each Sprint is producing many pieces of working, tested code, so the teams
must understand exactly how these engineering artifacts relate to each other and be able to see their status
at every point in time.

Scaling Scrum
presents special
tooling challenges

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 20

Tooling Infrastructure Opportunities
Being software developers after all, the teams will naturally want to better organize their artifacts and
automate those aspects of the Scrum process that lend themselves to software support. Specifically, the
teams will likely want to add infrastructure support for the following activities and artifact types in the software
lifecycle:

 Backlog Management – As system complexity grows, the team will want better support for
capture and maintenance of the feature lists, functional and nonfunctional requirements, use
cases, and user stories as well as the priorities, estimates, status and owners of these items. As
Scrum is applied to larger projects, these artifacts may grow to many thousands in count and a
means to organize, support and view them by system or subsystem becomes critical.

 Project Reporting – Scrum eschews traditional, waterfall-like project plans, but the tactical day
to day project management nature of Scrum is intense and unremitting. The team will need a
simple way for each member to enter their task estimates, status, and effort remaining so that
the BurnDown Charts are automated and continuously available. In addition, the infrastructure
should support the natural signaling teams use as backlog items move through their lifecycle.
Senior personnel will need to look across teams and understand their individual iterations and
release plans in order to asses the status of their program as a whole.

 Just-in-Time Requirements Elaboration – Many smaller Scrum projects succeed with informal
requirements mechanisms such as direct discussion between the Product Owner and Team, but
as project complexity and criticality grows, more depth and richness of requirements expression
and requirements versioning will likely be required. For example, documentation of interfaces
that affect multiple teams becomes critical. Changes to interfaces or new features that cross
team boundaries may have a significant impact on the project. These requirements should be
elaborated on a just-in-time basis, meaning at, or just prior to the Sprint that implements the new
functionality. To address this problem, teams may want centralized support for richer forms of
requirements expression, their compilation for review and automated change notification.

 Early Testing: Since every Sprint delivers potentially shippable code into the product baseline,
early test case development and test automation enables teams to support the rapid iteration
requirements of Scrum. Tooling that generates test cases directly from requirements or story
cards will accelerate the development process and provide the inherent traceability needed to
prove acceptance of the feature. Know that the ongoing management of the hundreds and
thousands of regression tests that accrue will likely become the critical factor in determining the
speed and success of your Sprints.

 Release Planning – The philosophy of Scrum focuses on the “art of the possible in the nearer
term”, as opposed to the black art of supposedly predicting exactly what will be delivered 6-12
Sprints down the road. This philosophy is a breakthrough in thinking at the team level because it
allows Scrum teams to focus in a “heads down” fashion for 30 days at a time, and thus produce
working software more reliably. But as the teams grow and scale, applying additional analysis
and rigor to Sprints beyond the immediate horizon helps avoid architectures that require
substantial re-factoring down the road. While re-factoring is highly encouraged in agile, it
becomes less practical as the scope of the application and the number of existing deployments
increases. Additional release planning that provides us with architectural runway is often
appropriate. Therefore, the art of Sprint planning can include “a few Sprints out” and “what-if”
planning functions that help the teams make backlog tradeoffs and communicate a reasonable
vision and product roadmap to the sponsors.

In addition, these teams will typically want to organize all these assets in a central repository where every
team member can access them, 24x7, worldwide, and one which provides instantaneous views of project
and program status, with automated change notification for critical project changes.

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 21

Evolving the Infrastructure in Sprints
In Scrum, deploying this level of infrastructure is not a one time event, done “up front” by a tooling team.
Instead, the Scrum teams themselves take on the task of identifying what they will buy and build to address
their problems based on the lessons learned in prior Sprints. Moreover, these investments are made in the
context of ongoing Sprints. Therefore the team addresses the build out of infrastructure by adding items to
the Product Backlog to address the infrastructure items as per Figure 4 below. Of course, customer facing
functionality still takes priority, but the experienced team recognizes they must be able to continuously
schedule infrastructure work as well in order to maintain their velocity and productivity as the application
scope and number of teams grows.

Figure 4: Parsing Scalability Infrastructure into a Sprint

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 22

Summary
Scrum is a proven and effective software development practice that can rapidly increase the productivity,
delivery speed and quality of software teams.

What IT organization would not benefit from these attributes commonly experienced by successful Scrum
implementations?

 Decreased development cycle times

 Higher value throughput to end users

 Higher quality

 Lower development risk

 Greater user satisfaction

 Improved company morale

While appearing simple on the surface, implementing Scrum often requires substantial organizational change
to eliminate the impediments to effective development and delivery. As lead change agent, the CIO or other
executive sponsor has the primary responsibility for eliminating these impediments. It is the enduring
commitment by the CIO that may well be the difference between success and failure of the implementation.
While none of this is easy, the CIO who commits to improving software outcomes with Scrum will take the
first step in ensuring that the enterprise is well on its way to achieving the business benefits of faster and
better quality software delivery.

In addition, Scrum is highly effective in large-scale enterprise application development and can support the
needs of many hundreds of developers working on shared applications. Scaling Scrum presents an
additional set of challenges to infrastructure and tooling that the teams themselves will address – but
overcoming these challenges will likely deliver a substantial advantage to these larger organizations over
their marketplace rivals.

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 23

Bibliography
Agile Manifesto: www.agilealliance.org

Beck, Kent. Extreme Programming Explained: Embrace Change (2nd Edition). Boston: Addison-Wesley,
2004.

Schwaber. Ken. Agile Project Management with Scrum. Redmond, WA: Microsoft Press, 2004.

Schwaber, Ken, and Mike Beedle. Agile Software Development with Scrum. Upper Saddle River, N.J.:
Prentice Hall, 2002.

http://www.agilealliance.org

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 24

Appendix A - Resources

Selected Reading
Beck, Kent. Extreme Programming Explained: Embrace Change 2nd Edition. Boston: Addison-Wesley, 2004.

Cockburn, Alistair. Agile Software Development. Boston: Addison-Wesley, 2002.

Cohn, Mike. User Stories Applied. Boston, MA: Pearson Education, 2004.

Highsmith, Jim. Agile Project Management: Creating Innovative Products. Boston: Pearson Education, 2004.

Nonaka, Ikujiro and Hirotaka Takeuchi. The Knowledge-Creating Company. Oxford University Press, 1995.

Poppendieck, Mary and Tom Poppendieck. Lean Software Development. Addison-Wesley, 2003.

Schwaber. Ken. Agile Project Management with Scrum. Redmond, WA: Microsoft Press, 2004.

Schwaber, Ken, and Mike Beedle. Agile Software Development with Scrum. Upper Saddle River, N.J.: Prentice Hall, 2002.

Larman, Craig. Agile and Iterative Development: A Manager’s Guide, Boston: Addison Wesley 2004

Agile Training
SCRUM Master Class - www.controlchaos.com/certifiedscrum/

EXtreme Programming - www.xprogramming.com/xpmag/services.htm

Agile Tooling and Training
Rally Software Development: www.rallydev.com

Other
Agile Alliance: www.agilealliance.org

ScrumAlliance: http://www.scrumalliance.org/

Possible newsgroups for Scrum / Agile interested people are:
Scrum Development: http://groups.yahoo.com/group/scrumdevelopment/

Agile Management: http://groups.yahoo.com/group/agilemanagement/

Agile Testing: http://groups.yahoo.com/group/agile-testing

Lean development: http://groups.yahoo.com/group/leandevelopment/

http://www.controlchaos.com/certifiedscrum/
http://www.xprogramming.com/xpmag/services.htm
http://www.rallydev.com
http://www.scrumalliance.org/
http://groups.yahoo.com/group/scrumdevelopment/
http://groups.yahoo.com/group/agilemanagement/
http://groups.yahoo.com/group/agile-testing
http://groups.yahoo.com/group/leandevelopment/

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 25

Appendix B - The Agile Manifesto
In 2001, a workshop was held in Snowbird, Utah, USA, where various originators and practitioners of agile methodologies met to
understand what they had in common. They picked the word "agile" for an umbrella term and crafted the Manifesto for Agile Software
Development, whose underpinning are a statement of shared values:

“We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to
value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.”

The Manifesto struck a chord, and it led to many new agile projects being started. As with any human endeavor, some succeeded and
some failed. But what was striking about the successes was how much both the business people and the technical people loved their
project. This was the way they wanted software development done. Successful projects spawned enthusiasts.

Principles behind the Agile Manifesto
The Agile Manifesto signatories agreed on twelve principles that underwrite and re-enforce the manifesto. These principles focus on
deliverables and change, people & communication and feedback:

Deliverables & Change
Instead of prescribing or advising on large number of artifacts that should be delivered as the result of a successful project completion,
agile methods go back to the principle deliverable: working software.

 Working software is the primary measure of progress.

 Our highest priority is to satisfy the customer through early and continuous delivery of valuable software.

 Deliver working software frequently, from a couple of weeks to a couple of months, with a preference to the shorter
timescale.

 Welcome changing requirements, even late in development. Agile processes harness change for the customer's
competitive advantage.

 The best architectures, requirements, and designs emerge from self-organizing teams.

 Simplicity -the art of maximizing the amount of work not done- is essential.

 Continuous attention to technical excellence and good design enhances agility.

People & Communication
Building working software systems is first and foremost about people.

 Build projects around motivated individuals. Give them the environment and support they need, and trust them to get the
job done.

 Business people and developers must work together daily throughout the project.

 The most efficient and effective method of conveying information to and within a development team is face-to-face
conversation.

 Agile processes promote sustainable development. The sponsors, developers, and users should be able to maintain a
constant pace indefinitely.

Feedback
No process or method can be static, hence feedback and self-adjustment needs to be build-in.

 At regular intervals, the team reflects on how to become more effective, then tunes and adjusts its behavior accordingly.

Credit to agile leaders
A number of thought leaders have participated in the development of various agile methods, while impossible to recognize them all,
these include: Kent Beck (XP), Mike Beedle, Ken Schwaber & Jeff Sutherland (Scrum), Alistair Cockburn (Crystal), Ward Cunningham
(FIT), Martin Fowler (XP), Jim Highsmith (Agile Project Management), Marie & Tom Poppendieck (Lean Software Development) and
Ron Jeffries (XP).

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 26

Appendix C - Scrum Metrics

Table 1 – Scrum Process Metrics (Hartmann, Stallings)
Project:

Scoring (0-5) Sprint 1 Sprint 2

1. Product Owner

Product Backlog developed owned and managed by Product Owner

Product Owner process is flexible; collaboration with team is ongoing

Product Owner and stake-holder participation at Sprint Review

Product Owner manages project by value

Total "Product Owner" Score

2. Planning

Product Backlog is descriptive, prioritized and has effective estimates

Team develops and manages Sprint Backlog

Team involves stakeholders and dependencies in effective manner

Project progress can be tracked by backlog BurnDown and value burnup

Sustainable pace

Total "Planning" Score

3. Schedule

Sprint Planning regular, on time, fully attended

Sprint Review regular, on time, fully attended

Daily Scrum occurs on time, is fully attended

Team meets its commitments to Sprint

Total "Schedule" Score

4. Process

Team self-polices and reinforces use of process and rules

Organization is able to comply with Scrum rules

ScrumMaster is effective in getting process followed

Team is self-managing

Surprises don't occur

Team is cross-functional

Team and Product Owner collaborate and work closely together

Team works to improve itself and its processes

Team adequately manages dependencies

Total "Process" Score

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 27

Project:

Scoring (0-5) Sprint 1 Sprint 2

5. Team

Team members are dedicated and honor commitments

Team effectively acts upon indicators in Sprint Burndown

Communications between team members is effective

Team effectively manages conflict within team

Team improves internal development processes

Total "Team" Score

6. Reporting

Product Backlog is effectively maintained and communicated

Sprint Backlog is effectively maintained and communicated

Project and Sprint reporting are effective and understood

Value is used to manage Product Backlog

Total "Reporting" Score

7. Engineering Practices/Infrastructure

At least daily build

Common source code library

Metric for quality of increment

Increment metric met

Test driven development practices

Refactoring practices

Design review practices

Code review practices

Coding standards

Automated unit test harness

Automated acceptance test harness

Total "Engineering" Score

© 2005 Rally Software Development Corp., Ken Schwaber and ScrumAlliance 28

Table 2 – Scrum Project Metrics (Rally Software Development Corp.)

Project:

 Sprint 1 Sprint 2

Functionality

New Features Planned

New Features Completed

Story cards

In iteration

accepted

% Accepted

not accepted

pushed to next

pushed later

added/deleted

Quality & Test Automation

% SC with test available / tests automated

Open Defect Count (P1 + P2)

Total Open Defect Count

test cases

manual test cases required to regress

Code coverage %

Architecture

Refactors completed

Refactors in progress

Refactor backlog

Customer debt features

Customer feature debts accepted

Release Plan

Confidence that release plan is understood

Confidence in achieving plan

Planned Release Date

Actual Release Date

	
	Table of Contents
	Introduction
	Overview of Scrum and Software Agility
	Scrum Principles
	Scrum and Software Agility

	Preparing for Scrum
	“Scrumming” both the Software Process and the Organization
	The CIO’s Role as Organizational ScrumMaster �for Continuous Improvement
	Caution: Change is Hard Work

	A Playbook for Adopting Scrum
	Play 0 - Overview, Assessment and Pilot Preparation
	Play 1 - Pilot Project(s)
	Play 2 - Organizational Expansion
	Play 3 – Achieving Impact
	Play 4 - Measure, Assess and Adjust
	Play 5 – Expand and Win

	Organizational Impediments to Adopting Scrum
	Exposing the Impediments with Scrum
	Characterizing Impediments

	Scaling Scrum
	Scaling the Organization: Scrum Teams of Teams
	Coordinating Teams of Teams
	Tooling Infrastructure for Enterprise Agility

	Summary
	Bibliography
	Appendix A - Resources
	Selected Reading
	Agile Training
	Agile Tooling and Training
	Other
	Possible newsgroups for Scrum / Agile interested people are:

	Appendix B - The Agile Manifesto
	Principles behind the Agile Manifesto
	Deliverables & Change
	People & Communication
	Feedback
	Credit to agile leaders

	Appendix C - Scrum Metrics
	Table 1 – Scrum Process Metrics (Hartmann, Stallings)
	Table 2 – Scrum Project Metrics (Rally Software Development Corp.)

