COVER FEATURE

Mike Cobn

Mountain Goat
Software

Doris Ford

Precision Projects

Computer

Introducing an Agile

Process to an

Organization

The transition from a plan-driven to an agile process affects not only the
development team members, but also other teams, departments, and man-
agement. The authors describe common pitfalls and effective approaches

to making this change.

ince the publication of Kent Beck’s Extreme
Programming Explained,' agile processes
have grown increasingly popular. Agile
processes allow for changing require-
ments throughout the development cycle
and stress collaboration between software devel-
opers and customers and early product delivery.

The “Agile Manifesto” establishes a common
framework for these processes: Value individuals
and interactions over processes and tools, working
software over comprehensive documentation, cus-
tomer collaboration over contract negotiation, and
responding to change over following a plan.” The
processes most commonly considered agile include
Extreme Programming (XP),' Lean Development,’
Crystal,* and Scrum.**

In Scrum, projects progress in a series of month-
long iterations called sprints. Development teams
meet with the client, or product owner, before each
sprint to prioritize the work to be done and select the
tasks the team can complete in the upcoming sprint.

During the sprint, the team stays on track by
holding brief daily meetings. At the end of each
sprint, the team delivers a potentially shippable
product increment. Scrum is ideally suited for pro-
jects with rapidly changing or highly emergent
requirements such as Web projects or product devel-
opment for new markets.

Over the past four years, we have introduced
Scrum to seven organizations in four states. Some
of the projects were complex and involved distrib-
uted teams. Others were straightforward and
involved small, colocated teams. However, even the

Published by the IEEE Computer Society

simple projects reached across many departments
or functional areas. A failure to sell the process
change to any one area can negatively impact the
project’s outcome.

Through trial and error, we have discovered sev-
eral approaches for successfully introducing agile
processes to organizations.

DEVELOPERS

Most developers respond to the proposed intro-
duction of an agile process with the appropriate
combination of skepticism, enthusiasm, and cau-
tious optimism. Other developers, however, either
resist the change or overzealously jump into the pro-
ject without enough forethought. Either reaction
can cause problems.

Resistance

In general, agile processes value code production
more than plan-driven processes do. In a plan-dri-
ven process, developers might treat Unified
Modeling Language designs and other noncode
items as first-class artifacts. In an agile process,
however, these items usually exist only to support
the coding activity.

While introducing Scrum to various project
teams, we invariably found programmers who
enjoy producing noncode artifacts far more than
they are willing to admit. We also encountered pro-
grammers who measure their contribution to a pro-
ject by the number of meetings they attend. These
programmers go beyond “analysis paralysis” and
actively seek opportunities to add formalized tasks

0018-9162/03/$17.00 © 2003 IEEE

back into an agile process. One programmer, for
example, created a formal document type and
attempted to coerce his peers into generating the
document for hundreds of cases when it was called
for in perhaps a dozen.

In such situations, it is best not to intervene. The
other team members can quickly assess the value
of these activities and will not adopt them if they do
not help the overall development effort.

Micromanagement

A surprising number of developers view using
agile processes as an attempt to micromanage.
Because approaches like Scrum and XP accelerate
project cycles, developers typically interact with their
managers more frequently but for shorter periods.
In a plan-driven process, a manager might go a full
week without talking with a particular developer,
but daily contact is the norm in most agile processes.

Developers who view agile processes as micro-
management tend to perceive interactions with
their project managers as being about due dates and
missed deadlines. To avoid this problem, project
managers should constantly demonstrate their
desire to remove obstacles as quickly as possible
and not complain if a task takes too long.
Managers can be surprised, but should not be judg-
mental, when told that a task will take longer than
originally thought.

Transitioning from a heavyweight process

Some developers we encountered preferred
heavyweight plan-driven processes because they
believe they looked better on a resume. Because
these individuals do not have deeply held convic-
tions about the process’s value, they can eventually
be swayed by their coworkers’ opinions and actions.

A gradual transition from a heavyweight to an
agile process can make the change easier on the
development team. Some teams, when first intro-
duced to Scrum, are overwhelmed to the point of
inaction by the freedom of not having a day-by-day
Gantt chart directing their work.

We have helped teams ease into Scrum by defin-
ing a set of sprint types:

prototyping,
requirements capture,
analysis and design,
implementation, and
stabilization.

We then work with the teams to define the arti-
facts that will result from each sprint type. Using

sprint types introduces just enough formality
that the teams can more clearly see their way
through the project. As the teams become
more adept with the informality of the agile
process, they gradually drop the sprint types
concept.

Distributed development

Teams using agile processes tend to make
decisions more quickly than plan-driven
teams, relying on more frequent (and usually
informal) communication to support this
pace.

A failed attempt to use an agile process in a pro-
ject with sites 2,000 miles apart taught us that orga-
nizations should resist distributed development for
at least the first two or three months after initiat-
ing an agile process. The companies involved in the
merger that initiated the project needed to resolve
their political and cultural issues before developers
could succeed with a project shared across multi-
ple cities.

If distributed teams must be combined, bringing
as many people as possible together for the first
week or two of the project can increase the likeli-
hood of success. We have successfully used this
approach on multiple distributed projects.

The need for top talent

Barry Boehm’s principle of top talent, “use bet-
ter and fewer people,”” is central to an agile
process. Agile processes strip nonessential activi-
ties from projects, leaving developers more time to
develop.

Although the difference in productivity between
the best and worst programmers on a team may
exceed the documented ratio of 10:1,® the produc-
tivity difference matters most when the program-
mers are working on tasks essential to software
delivery. Productivity differences are irrelevant
when the programmers are engaged in nonessen-
tial activities.

When fully engaged and comfortable with an
agile process, a development team moves very
quickly. Too many slow workers either slow the
entire team or end up left behind by their faster col-
leagues.

Overzealous teams

One team we worked with was overly enthusi-
astic about a move to XP. At the project’s onset,
team members aggressively began documenting
requirements by writing user stories, planning iter-
ations, and pairing up for programming tasks.

Teams using
agile processes
tend to make
decisions more
quickly than
plan-driven
teams.

June 2003

Agile processes
do not imply
making
decisions
without
forethought.

They even moved out of their existing space
and into an adjacent abandoned building bet-
ter suited for XP. Unfortunately, they did all
of this so quickly that the rest of the organi-
zation had no idea what they were doing,
resulting in a number of problems.
Although agile processes promise greater
productivity once in place, productivity may
decrease during the transition while the team
learns new techniques. Not having antici-
pated this decreased productivity, the team
chose to redouble its efforts when it occurred.

Agile processes do not imply making decisions
without forethought, a distinction this overzealous
team missed in its quest for speed and agility. To
this team, Beck’s recommendation to “put in what
you need when you need it”! meant they needed to
think only about an hour ahead. They didn’t have
the discipline XP requires, and, while paying lip
service to XP, they were actually doing nothing
more than hacking.’

Overzealousness also caused the team to split
into two camps: the overzealous team members and
a group that knew decisions were being made too
quickly and often incorrectly. Much like the tor-
toise and the hare, these two subteams pursued the
project differently. After the project’s failure, it took
a while to convince both groups to jointly pursue
an agile process, albeit one that was “less agile”
than the overzealous members initially wanted.

Testers

Writing source code is a primary activity in any
development process, but it is especially important
in agile processes: “Code is the one artifact that
development absolutely cannot live without.”"

Agile processes do not have separate coding and
testing phases; rather, code written during an iter-
ation must be tested and debugged during that iter-
ation. Testers and programmers work more closely
earlier in an agile process than in other processes.
Thus, testers and other nonprogrammers must be
carefully integrated into any agile project in which
they participate.

Initially, testers, even more than programmers,
tend to view an agile process as micromanagement.
Before the adoption of an agile process, many testers
(especially those in organizations without a sepa-
rate and dedicated testing group) do not receive
much attention from managers. Test activities are
often relegated to a single line item on a project plan.

In plan-driven projects, testing tends to occur
without explicit notice from a project manager, so
testers are not used to the extra attention they

Computer

receive on most agile process projects. As with pro-
grammers, testers will see over time that an agile
process is not synonymous with micromanagement.

We have encountered testers who secretly want
to be programmers and use a project’s early itera-
tions to sneak in some programming. We also have
worked with testers who either volunteer or are
coerced into writing unit tests for programmers.

Especially during a project’s earliest iterations, you
should discourage testers from such inappropriate
activities. First, if the tester knows enough about pro-
gramming to program and you need another pro-
grammer, hire the tester. Second, writing a unit test
for someone else may result in a useful test, but it
almost certainly loses some of the white-box advan-
tages inherent in self-written unit tests.

UPPER MANAGEMENT

Upper management often presents unique chal-
lenges to organizations wishing to move toward an
agile process. Upper-management concerns gener-
ally fall into four categories:

e How can we promise new features to cus-
tomers?

e How can we track progress?

How will the agile process impact other

groups?

When does the project end?

Many managers, particularly those at higher lev-
els, are reluctant to surrender the feeling of control
that Gantt charts and other plan-driven process arti-
facts give them. Similarly, they may be comforted
by the development group’s promise to deliver an
exact amount of functionality on a specified date,
even if they know the group won’t be able to do so.

Customer commitments

Managers who worry that an agile process will
mean they can’t make product commitments must
understand that any past project plan that implied
guarantees about delivery date, cost, and func-
tionality was either wrong, heavily padded, or both.

In organizations with a history of incorrect pro-
ject estimates, it might not be difficult to convince
upper management that an agile process is worth
trying. If a software group has a record of on-time
delivery, however, you must convince upper man-
agement that using an agile process could have
resulted in projects being completed either sooner
or with fewer resources.'"!?

Drawing a typical cost, date, and feature triangle
usually can persuade upper management that

such commitments are an illusion. Once upper
management realizes that past commitments were
mostly combinations of good luck and padded esti-
mates, they become very interested in any process
that promises greater efficiency.

Tracking progress

Plan-driven processes appeal to many upper
managers because they facilitate progress tracking.
A manager can track a process that results in
numerous documents by simply asking if the nec-
essary documents have been produced.

If a Software Test Plan is called for, a first level of
tracking can occur when the manager verifies its
existence. A second level of tracking can occur
when the manager weighs the document, and a
third if the manager reads it.

To persuade upper managers that agile processes
allow adequate project tracking, we usually create
two or more model status reports based entirely on
fictional data about the project an organization is
considering for an agile process. The reports depict
a fictional two- to four-week project cycle.

A typical status report for a Scrum process pro-
ject includes a list of key dates, a two- to five-para-
graph commentary on the project’s state, a burn-
down chart comparing progress to planned work,
key metrics (defect inflow, percentage of tests
passed, and so on) appropriate to the project’s
current state, and a list of key risks. The upper-
management decision makers we have worked with
have found this type of status reporting satisfactory.

Impact on other groups

Some upper managers have expressed concern
that although an agile process might benefit the
development group, it can adversely affect one or
more other groups. This concern becomes
unhealthy when another group’s processes nega-
tively impact the development team’s work. For
example, one software engineering group wanted
to use Scrum, while the product management group
that provided all specifications and requirements
wanted to continue with a heavyweight waterfall
approach. The CEO saw no problem in letting each
group pursue its independent strategies. The result
was 2,000 pages of detailed product specifications
fed into a development process that needed work
prioritized in monthlong units.

The software engineering group had to guess pri-
orities from the product management group’s three-
to four-month task lists. Once the software engi-
neering group was accustomed to Scrum, however,
they moved through the requirements faster than

the other group could write new require-
ments.

When introducing an agile process into an
organization, upper management must under-
stand and agree on how this will impact groups
outside the development group. If they don’,
and if they can’t agree on how to resolve dif-
ferences of opinion, most efforts will likely fail.

Project completion

Finally, upper management commonly
fears that a project will go on forever. Most
managers are comfortable with a model in
which project budgets are approved and the
project remains within the budget confines. They
are less comfortable when told that project itera-
tions will persist as long as the customer or a cus-
tomer proxy continues to identify high-priority,
high-value work.

Wrapping budgeting and strategic-planning activ-
ities around the project can address these concerns.
For example, we estimated one commercial project
would take from nine to 15 months—a fairly impre-
cise estimate because we didn’t know exactly what
features the completed system would include.
Regardless of how many bells and whistles the client
desired, however, we felt reasonably sure that a suit-
able initial release would be available in nine
months. We therefore convinced upper manage-
ment to fund a nine-month development effort with
the agreement that additional funding would be dis-
cussed near the end of that period.

HUMAN RESOURCES

You might think that a human resources depart-
ment would have no interest in one group’s transi-
tion to an agile development process, but this is not
the case. On a project that was transitioning to XP,
two programmers approached the HR department
with complaints about pair programming—two pro-
grammers sharing a keyboard and monitor and writ-
ing code in tandem—which, of course, sounded odd
and unproductive to HR. Because we hadn’t told HR
about the process change, we were immediately in
the difficult position of having to explain why pair
programming made sense.

Another time, a small subset of programmers
complained to HR that they didn’t like how a pro-
ject was being managed. The complaints stemmed
from their unwillingness to consider or try anything
new or different. The programmers were familiar
with plan-driven processes, and anything else
seemed too chaotic. This was in 1999, before XP
had become an intriguing buzzword, before the

Model status
reports can help
convince upper

management

that agile
processes allow
adequate project

tracking.

June 2003

Agile Alliance® had been formed, and when Scrum
was only beginning to be documented.

The HR department must be told when a group
is transitioning to an agile process. When told,
however, the HR department may raise its own
concerns, centering on an agile process’s imprecise
deliverables and dynamic goals. Many HR depart-
ments require corrective action plans, which cite
specific deliverables and deadlines that can result
in the employee’s termination if not met.

It is difficult to shoehorn tasks from an XP iter-
ation or Scrum sprint into a deterministic correc-
tive action plan. However, we have found that by
proactively working with HR, we can sufficiently
define tasks and deadlines that both satisfy HR and

let the project follow an agile process.

nization will significantly impact the ultimate

success of the process change. Any new
process is likely to appeal to some developers, who
are excited to be among the first to try it. Similarly,
this newness is an obstacle to developers who
oppose change.

H ow an agile process is introduced into an orga-

area of expertise? IEEE Computer Society

I ooking for a community targeted to your
Technical Committees explore a variety

of computing niches and provide forums for
dialogue among peers. These groups influence
our standards development and offer leading
conferences in their fields.

Join @ community that fargets your discipline.

In our Technical Committees, you're in good company.

computer.org/TCsignup/

Agile processes have continued to evolve over the
past four years, and approaches that worked in one
case have not worked in another. As experience in
the introduction of object technology into compa-
nies in the late 1980s and early 1990s led to the dis-
covery of best practices in introducing that
technology, we expect an understanding to arise
over the next few years for agile processes.

References
1. K. Beck, Extreme Programming Explained, Addison-
Wesley, 2000.
2. K. Beck et al., “Manifesto for Agile Software Devel-
opment,” Feb. 2001; www.agilemanifesto.org.
3. M. Poppendieck and T. Poppendieck, Lean Software
Development, Addison-Wesley, 2003.
4. A. Cockburn, Agile Software Development, Addi-
son-Wesley, 2002.
5. M. Cohn, “The Scrum Development Process”;
www.mountaingoatsoftware.com/scrum.
6. K. Schwaber and M. Beedle, Agile Software Devel-
opment with Scrum, Prentice Hall, 2002.
7. B. Boehm, Software Engineering Economics, Pren-
tice Hall, 1981.
8. F. Brooks Jr., The Mythical Man-Month, Addison-
Wesley, 1975.
9. B. Boehm, “Get Ready for Agile Methods, with
Care,” Computer, Jan. 2002, pp. 64-69.

10. A. Cockburn and J. Highsmith, “Agile Software
Development: The People Factor,” Computer, Nov.
2001, pp. 131-133.

11. M. Cohn, “The Upside of Downsizing,” Software
Test and Quality Eng., Jan. 2003, pp. 18-21.

12. Shine Technologies, “Agile Methodologies Survey”;
www.shinetech.com/agile_survey_results.jsp, Jan.
2003.

Mike Cobn is the founder of Mountain Goat Soft-
ware. His current research interests include agile
project management, communicating requirements
through user stories, and metrics for agile projects.
Cohn received an MS in computer science from the
University of Idaho. He is a member of the ACM
and the Agile Alliance. Contact him at mike@
mountaingoatsoftware.com.

Doris Ford is the president of Precision Projects.
Her current research interests include software pro-
ject management, project metric development, and
tracking methodologies. Ford received an MBA
from Regis University. She is a member of the Pro-
ject Management Institute. Contact her at
dtford@yahoo.com.

