SCRUM:: An extension patter n language for
hyper productive softwar e development

Mike Beedle beedlem@fti-consulting.com
Martine Devos mdevos@argo.be
Y onat Sharon yonat@usa.net
Ken Schwaber virman@aol.com
Jeff Sutherland jeff.sutherland@idx.com

Abstract
The patterns of the SCRUM development method are presented as an
extension pattern language to the existing organizational pattern languages.
In the last few years, the SCRUM development method has rapidly gained
recognition as an effective tool to hyper-productive software development.
However, when SCRUM patterns are combined with other existing
organizational patterns, they lead to highly adaptive, yet well-structured
software development organizations. Also, decomposing SCRUM into
patterns can guide adoption of only those parts of SCRUM that are applicable
to a specific situation.

1. Introduction

NOTE: Throughout this paper we assume the reader is familiar with the other org
patterns [OrgPatt], [Coplien95]. Also, the written forms of all pattern names will be
presented in bolded-italics types as in: Devel oper ControlsProcess, while the things that
the patterns are will be represented in italics as in: Backlog.

Can arepeatable and defined process really exist for software development? Some think
thisis not only possible but necessary, for example those that favor the CMM (Capability
Maturity Model) approach to software development [1]. The CMM defines five stages of
process maturity initial, repeatable, defined, managed and optimizing, and asks its users
to define the processes of 18 KPA (key process areas).

However, many of us doing work in the trenches have found over time that the
“repeatable or defined” process approach makes many incorrect assumptions, such as:

1) Repeatable/defined problem. A repeatable/defined process assumes that
there is a step to capture requirements, but in most cases, it is not possible to
define the requirements of an application, because they are either not well
defined or they keep changing.

2) Repeatable/defined solution. A repeatable/defined process assumes that an
architecture can be fully specified, but in reality it is evolved, partly due to
the fact of missing or changing requirements (as described above), and partly
because of the creative process involved in creating it.

3) Repeatable/defined developers. The capabilities of a software developer vary
widely, so a process that works for one developer may not work for another
one.

4) Repeatable/defined organizational environment. The schedule pressure,
priorities (e.g. quality vs. price), client behavior, and so on; are never
repeatable or defined.

The problem with these assumptions is that they assume non-chaotic behavior. Even
small unknowns can have a big influence on the result.

In actuality, the removal of uncertainties is impossible. Many of us have searched for
answers beyond the repeatable/defined approach of software development, in a more
“adaptive approach”.

SCRUM assumes up-front the existence of chaos discussed above as incorrect
assumptions, and provides techniques to resolve these problems. These techniques are
rooted in complexity management i.e. self-organization, management of empirical
processes and knowledge creation.

In that sense, SCRUM is not only an "iterative and incremental” development method but
also an "adaptive" software development method.

2. How does SCRUM work?

SCRUM’s goal is to deliver as much quality software as possible within a series (3-8), of
short time-boxes (fixed time intervals) cal§afints that typically last about a month.

Each stage in the development cycle (Requirements, Analysis, Design, Evolution, and
Delivery) is now mapped to$print or series ofprints. The traditional software
development stages are retained for convenience primarily for tracking milestones. So,
for example, the Requirements stage may useSamet, including the delivery of a
prototype. The Analysis and Design stages may tak&wina each. While the

Evolution stage may take anywhere from 3 tgp&nts.

As opposed to arepeatable and defined process approach, in SCRUM there is no
predefined process within a Sprint. Instead, Scrum Meetings drive the completion of the
allocated activities.

Each Sprint operates on a number of work items called aBacklog. Asarule, no more
items are externally added into the Backlog within a Sprint. Internal items resulting from
the original pre-allocated Backlog can be added to it. The goal of a Sprint isto complete
as much quality software as possible, but typically less software is delivered in practice
(Worse | s Better pattern). The end result is that there are non-perfect NamedStableBases
delivered every Sprint.

Figure 1. A rugby team also uses Scrum Meetings (not shown here).

During a Sprint, Scrum Meetings are held daily to determine on:

1) what items were completed since the last Scrum Meeting.

2) what issues or blocks have been found that need to be resolved. (The
ScrumMaster is ateam leader role responsible for resolving the blocks.)

3) what new assignments make sense for the team to complete until the next
Scrum Meeting.

Scrum Meetings allow the development team to "socialize the team members knowledge™
and have a deep cultural transcendence.

This"knowledge socialization” promotes to a self-organized team structure, where the
development process is evolved on adaily basis.

At the end of each Sprint, there is a Demo to:

1) show the customer what's going on (EngageCustomer)

2) give the developer a sense of accomplishment (CompensateSuccess)

3) integrate and test a reasonable portion of the software being developed
(EngageQA)

4) ensure real progress — reduction of backlog, not just the production of more
papers / hours spenti@gmedStableBases)

After gathering and reprioritizing leftover and new tasks, aB&sklog is formed and a

new Sprint starts. Potentially, many other org patterns (organization and process
patterns) may be used in combination with the SCRUM patterns. While Coplien org
patterns, are an obvious choice because of their breadth, other org patterns from other
sources may also be very valuable [OrgPatt], [Coplien95].

“The system requires it” or the “The system does not allow it “ have become accepted
(and often unavoidable) justifications for human behavior. What we fear is that current
methods do not allow us to bu#dft enough software, because present methods and
design paradigms seem to inhibit adaptability. Therefore the majority of software
practitioners tend to become experts at what the gty in advance, working with

the unstated belief that there exists an optimal solution that can be planned a priori.

Once technology is adopted by an organization, it often becomes a constraining structure
that in part shapes the action space of the user. So we build software too much like we
build hardware, as if it were difficult to change, as if it has to be difficult to change.

In contrast, SCRUM allows us to busdfter software, so there is no need to write full
requirements up front. The user does not know what is possible and will ask for the pre-
tech-paper solution that he perceives to be possible. But not even the software developers
know fully what can be built before it is. Therefore, the user has no concept of what is
possible before he can feel it, or touch it [Blu96].

Clearly, we need a softer approach for building software. We should recognizesthat
impossible to have full requirements specified up-front or to freeze the context and
environment. Requirements are written in a context. Our system transforms that context.
New problems arise in the system and the new context.

This issue is not solved through improved methods for identifying the user requirements.
Instead it calls for a more complex process of generating fundamentally new operating
alternatives. The empirical way of working in SCRUM is one of the possible
alternatives.

3. The SCRUM Pattern Language

The following diagram shows the relationships among the SCRUM patterns and other org
patterns.

EngageQA NamedStableBases Firewall Devel operControl sProcess
Demo | | sprint SerumMaster SerumTeam Hyperlinked Org
AfterS

Backlog ScrumMegtings

Figure 2. SCRUM Pattern Language L attice

4. The Patterns of SCRUM

Scrum Meeting

Context
(FROM: Scrum Team, Scrum Master)

Y are a software developer or a coach managing a software development team where

there is a high percentage of discovery, creativity or testing involved. For example, a
first time delivery where the problem has to be specified, or an object model hasto be
created, or new or changing technologies are being used.

Activities such as scientific research, innovation, invention, architecture, engineering and
amyriad of other business situations may also exhibit this behavior.

Y ou may also be a"knowledge worker", an engineer, awriter, aresearch scientist, or an
artist, or a coach or manager who is overseeing the activities of ateam in these
environments.

(Misfit variables: estimation, planning, tracking, human comfort)

NOTE: Misfit variables are variables in the context that can be adjusted so the solution
can solve the problem.

Problem

What is the best way to control an empirical and unpredictable process such as software
development, scientific research, artistic projects or innovative designs where it is hard to
define the artifacts to be produced and the processes to achieve them?

Forces (Analysis of Misfit Variables in the Context)

[NOTE: MISFIT examples are referred by some as anti-patterns. | use here some
Dilbert-like names to indicate their awry nature.]

Estimation
(+) Accurate estimation for activities involving discovery, creativity or testing is
difficult because it typically involves large variances, and because small
differences in circumstances may cause significant differences in results.

These uncertainties come in at least 4 flavors:
a) Reguirements are not well understood.

b) Architectural dependencies are not easy to understand and are constantly
changing.

c) There may be unforeseen challenges with the technology. Even if the
challenges are known in advance, their solutions and related effort are not
known.

d) There may be hard bugs to resolve in the software, and therefore, it is typical
to see project estimatesthat are several orders of magnitude off. You can't
“plan bugs”, you can only plan bug handling and provide appropriate
prevention schemes based on the possibility of unexpected bugs.

MISFIT example:YouGotTheWrongNumber In projects with new or changing
requirements, a new architecture, new or changing technologies, and difficult
bugs to weed out, it is typical to see project estimates that are off by several
orders of magnitude.

(-) Estimation is important. One must be able to determine what are the future
tasks within some time horizon and prepare resources in advance.

MISFIT example: SetMeUpForFailure Projects where no estimation is done are
difficult to manage.

Planning
(+) Planning and reprioritizing tasks takestime. Using the knowledge workers'in
time planning meetings decreases productivity. Moreover, if the systemis
chaotic, no amount of planning can reduce uncertainties.

MISFIT example: ParalysisByPlanning Projects that waste everybody's time in
planning everything to an extreme detail but are never able to meet the plans.

(+) A plan that is too detailed becomes huge and hard to follow. It may be easier
to just apply common sense or call the customer. Also, the bigger the plan, the
more errors it will contain (alternatively, the cost of verifying its correctness
grows).

(-) No planning at all increases uncertainty among team members and would
eventually damage morale.

MISFIT examplelostVison Projects that never schedule anything tend to lose
control over their expectations. Without some schedule pressure no one will do
anything, and worse, it will become difficult to integrate together the different
parts being worked on independently.

Tracking

(+) Too much monitoring wastes time and suffocates developers.

(+) Tracking does not increase the certainty of the indicators because of the
chaotic nature of the system.

(+) Too much data is meaningless - The Haystack Syndrome.

MISFIT exampleMeasuredToDeath Projects that waste everybody’s time in
tracking everything to an extreme detail but are never able to meet the plans.
(You measured the tire pressure until all the air was out!)

(-) Not enough monitoring leads to blocks and possible idle time between
assignments.

MISFIT exampleWhatHappenedHere? Projects that never track anything tend
to lose control over what is being done. And eventually no one really knows what
has been done.

Solution
(A thing, albeit temporary)

Meet with the team members for a short time (~15 minutes) in aStaiyn Meeting,
where the only activity is asking each participant the following 3 questions:

(A process, and what staysthe same)

1) What they worked on since the last Scrum Meeting. The Scrum Master logs what
tasks have been completed and what remains undone.

2) What blocks if any they found in performing their tasks within the last 24 hrs. The
Scrum Master logs all blocks and later finds a way to resolve the blocks.

3) What they will be working in the next 24 hrs. The Scrum Master helps the team
members choosing the appropriate tasks to work on with the help of the Architect.
Because the tasks are schedule on a 24 hr basis the tasks are typically small (Small
Assignments).

Scrum Meetings typically take place at the same time and place every day, so they also
serve to build a strong culture. As such, Scrum Meetings are rituals that enhance the
socialization of status, issues, and plans for the team. The ScrumMaster leads the
meetings and logs all the tasks from every member of the team into a global project
Backlog. He also logs every block and resolves each block while the developers work on
new assignments.

Scrum Meetings not only schedule tasks for the developers but can and should schedule
activities for everyone involved in the project such as integration personnel dedicated to
configuration management, architects, Scrum Masters, Firewall [Coplien95], Coach
[Beedle97], or a QA team.

Scrum Meetings allow knowledge workers to accomplish mid-term goals typically
alocated in Sprintsthat last for about a month.

(what changes)

Scrum Meetings can also be held by self-directed teams, in that case, someone is
designated as the scribe and logs the completed and planned activities of the Backlog and
the existing blocks. All activities from the Backlog and the blocks are then distributed
among the team members for resolution.

The format of the Backlog and the blocks can also vary, ranging from alist of itemsina
piece of paper, to software representations of it over the INTERNET/INTRANET
[Schwaber97]. The SCRUM cycle can be adjusted but typically ranges between 2 hrs,
and 48 hrs.

Rationale

It is very easy to over- or under- estimate, which leads to either idle developer's time or to
delays in the completion of an assignment. Therefore, it is better to sample frequently the
status of small assignments. Processes with a high degree of unpredictability cannot use
traditional project planning techniques only, such as Gantt or PERT charts because the
rate of change of what is being analyzed, accomplished, or created istoo high. Instead,
constant reprioritization of tasks offers an adaptive mechanism that provides sampling of
systemic knowledge over short periods of time.

SCRUM meetings help also in the creation of an "anticipating culture” [Weinberg97],
because they encourage productive values:

* increase the overall sense of urgency,

» promote the sharing of knowledge,

* encourage dense communications and

« facilitate "honesty" among developers since everyone has to give a daily
status.

This same mechanism, encourages team members to socialize, externalize, internalize
and combine technical knowledge on an ongoing basis, thus allowing technical expertise
to become community property for the community of practice [Nonak&25slm

Meetings are therefore rituals with deep cultural transcendence. Meeting at the same
place at the same time, and with the same people, enhances a feeling of belonging, and
creates the habit of sharing knowledge.

Seen from the System Dynamics point of view [Senge94], software development has a
scheduling problem, because the nature of programming assignments has a rather
probabilistic nature. Estimates are hard to come by because:

1) inexperienced developers, managers and architects are involved in making the
estimates

2) there are typically interlocking architectural dependencies that are hard to manage
3) there are unknown or poorly documented requirements, or

4) there are unforeseen technical challenges

As a consequence, the software development becomes a teaotjiame, where it is

hard to estimate and control timyentory of available developer's time, unless increased
monitoring of small assignments is implemented [Goldratt90], [Senge90]. In that sense
the Scrum Meeting becomes the equivalent offermometer that constantly samples the
team’s temperature [Schwaber97-2].

From the Complexity Theory perspective [Holland95], [Holland98], SCRUM allows
flocking by forcing a faster agent interaction, therefore accelerating the process of self-
organization, because it shifts resources opportunistically, through the daily SCRUM
meetings.

This is understandable, because the relaxation of a self-organized multi-agent system is
proportional to the average exchange among agents per unit of time. And in fact, the
"interaction rate" is one of the levers one can push to control "emergent" behavior -- it is
like adding an enzyme or catalyst to a chemical reaction.

In SCRUM this means increasing the frequency of the SCRUM meetings, and allowing
morehyperlinks as described below, but up to an optimal upper frequency bound on the
SCRUM meetings (meetings/time), and up to an optimal upper bound on the hyper-links
or the SCRUM team members. Otherwise the organization spends too much time
socializing knowledge, instead of performing tasks.

Known Uses

(Mike Beedle) At Nike Securities in Chicago we have been using SCRUM meetings
since February 1997 to run all of our projects including BPR and software development.
Everyone involved in these projects receives aweek of training in SCRUM techniques.

(Yonat Sharon) At Elementrix Technologies we had a project that was running way past

late after about 5 months of development. Only a small part (about 20%) was completed

and even this part had too many bugs. The project manager started running bi-daily short

status meetings (none of us was familiar with the term SCRUM back then). In the

following month, the entire project was completed and the quality had risen sharply. Two
weeks later, a beta version was out. The meetings were discontinued and the project

hardly progressed since. | don't think the success of the project can be attributed to the
Scrum Meetings alone, but they did have a big part in this achievement.

One of my software team leaders at RAFAEL, implemented a variatigomwh

Meetings. He would visit each developer once a day, and ask him the 3 questions, and
he also managed a backlog. This does not have the team building effects, but it does
provide the frequent sampling.

Resulting Context

(TO:)

A structure such aSeveloper ControlsProcessis fully implemented through
FormFollowsFunction, or aCaseTeam in a business environment, is jelled into a highly
adaptable and hyperproductive team structure [Coplien95], [Beedle97].

The application of this pattern also leads to:

* highly visible project status.

* highly visible individual productivity.

» less time wasted because of blocks.

» less time wasted because of waiting for someone else.
* increased Team Socialization

10

Sprint
Context

(FROM : NamedStableBaseq Coplien95])

Y ou are a software developer or a coach managing a software development team where
thereis a high percentage of discovery, creativity or testing involved.

Y ou are building or expanding systems, that allow partitioning of work, with clean
interfacing, components or objects.

Problem

We want to balance the need of developers to work undisturbed and the need for
management and the customer to see real progress.

Forces

Developers need time to work undisturbed, but they need support for logistics and
management and users need to be convinced that real progress is made. (Misfit:
Developer without any kind of control will not be productive.)

Often, by the time systems are delivered, it is obsolete or it requires major changes. The
problem is that input from the environment is mostly collected at the start of the project,
while the user learns most using the system or intermediate releases. (Misfit:
Management that is too tight will slow things down.)

Some problems are “wicked”, that is it difficult to even describe the problem without a
notion of the solution. It is wrong to expect developers do to a clean design and commit
to it at the start of this kind of problems. Experimentation, feedback, creativity are
needed. (Misfit: Pretending that the requirements can be written down without
attempting a solution first is a fallacy.)

We want every person on the team to understand the problem fully and to be aware of all
the steps in development. This limits the size of the team and of the system developed.
Trust is a core value in SCRUM, and especially important for the succgasris, so
SelfSelectingTeamsiis a plus [Coplien95]. (Misfit: Large teams don’t work well,

because there is a limit as to how many humans can work on something together i.e
bounded rationality problem.)

11

For many people — project managers, customers, it is difficult to give up control and

proof of progress as provided in traditional development. It feels risky to do so; there is
no guarantee that the team will deliver. Customers and users can seldom give a final spec
because their needs as constantly evolving. The best they can do is evolve a product as
their needs evolve and as they learn along the process. In our development process we
don’t use this learning cycle and its benefits. (Misfit: Customer don’t really know what
they want until they see it, pretending otherwise leads to problems.)

Most systems development has the wrong basis. It supposes that the development process
is a well-understood approach that can be planned and estimated. If a project fails, that is
considered proof that the development process needs more rigor. If we could consider
developers to follow the process more rigorous the project can be completed successfully.
But these step by step approaches don’t work, because they do not cope with the
unpredictabilities (both human and technical) in system development.

At the start of neither a complete, detailed specification and planning of nor scheduling is
possible, because of these many uncertainties. (Misfit: Rigid processes are often too
constraining and fall short to deliver a system into production.)

Developers and project managers often live, or are forced to live a lie. They have to
pretend that they can plan, predict and deliver, and then work the best way that they know
to deliver the system. They build one way, pretend to build another way, and as a result
are without real controls. (Misfit: Rigid plans are often too constraining and fall short to
deliver a system into production.)

Often overhead is created to prove that a process is on track.

We have followed Pert charts and the like, believing that a system would result.

Current process automation adds administrative work for managers and developers and
results often in marginally used development processes that become disk-ware.

(Misfit: Activity is not synonymous with results. More often than not a project plan
shows activities but hardly ensures progress and results.)

Solution

EachSprint takes a pre-allocated amount of work from the Backlog. The team commits
to it. As a rule nothing is added externally during a sprint. External additions are added to
the global backlog. Blocks resulting from tB&int can also be added to the Backlog. A
Sprint ends with a DemonstratioDgmoAfter Sprint) of new functionality.

Give the developers the space to be creative, and to learn by exploring the design space,
doing actual work, undisturbed by outside interruptions, free to adapt their way of
working using opportunities and insights. At the same time keep the management and
stakeholders confident by showing real progress instead of documents and reports...
produced as proof. Do this in short cyclgs,ints, where part of thBacklog is allocated

to a small team. In Sorint, during a period of approximately 30 days, an agreed amount

of work will be performed, to create a deliveralidacklog is assigned t&prints by

12

priority and by approximation of what can be accomplished during a month. Chunks of
high cohesion and low coupling are selected. The focus is on enabling, rather than
micro-management.

During the Sprint, outside chaos is not allowed in the increment. The team, as they
proceed, may change course and their way of working. By buffering them from the
outside, we allow them to focus on the work at hand and on delivering the best they can
and the best way they can, using their skill, experience and creativity.

Each Sporint produces a visible and usable deliverable. Thisis demonstrated in Demo. An
increment can be either intermediate or shippable, but it should stand on itsown. The
goal of a Sprint isto complete as much quality software as possible and to ensure real
progress, not paper milestones as alibi.

Rationale

Developing systems is unpredictable and chaotic. Development is an empirical process
that requires significant thought during the process. A method can only supply a
framework for the real work and indicate the places where creativity is needed. Yet we
tread black-box processes often as fully defined processes. Unpredictable results occur.
We lack the controls to measure and respond to the unpredictable.

While building a system many artifacts come into existence, many new insights are
gained. These new artifacts can guide future thinking. Increased productivity through
good tools or uncovered components may open the opportunity for adding more Backlog
and more functionality to our system, or for releasing a product early.

Therefore, during a Sprint, we optimize communications and maximize information
sharing in daily Scrum Mestings.

Sorints set up a safe environment and time slots where developers can work undisturbed
by outside requests or opportunities. They also offer a pre-alocated piece of work that
the customer, management and the user can trust the Scrum Team to produce as a useful
deliverable, such as aworking piece of code at the end of the Sprint. The team focuses
on the right things to do, management working on eliminating what stands in this way of
doing in better.

Known Uses

At Argo, the Flemish department of education, we have been using Sprints since January
1997 on a large number of end-user-projects and for the development of a framework for
database, document management and workflow. The Backlog is divided in Sprints that
last about a month. At the end of each Sprint aworking Smalltalk image is delivered with
integration of all current applications. The team meets daily in Scrum Meetings and

13

Backlog is re-prioritized after the Demo in a monthly meeting with the steering
committee.

Resulting Context

(TO: Backlog)
High degree of effective ownership by the participants, including users who stay involved
through Demo’s and the prioritizing of th8acklog).

At the end of &print, we have the best approximation of what was planned at the start of
the Sprint. At the end of th&print, in a review session, the supervisors have the
opportunity to change the planning for the future. The project is totally flexible at this
point. Target, product, delivery date and cost can be redefined.

With SCRUM we get a large amount of post-planning flexibility (for both customer and
developer).

It may become clear, in the datgrum Meetings throughout théprint that some team-
members are loosing time at non- or less productive tasks. Alternatively, it may also
become clear that people need more time for their tasks than originally allocated by
management, because developers may turn out less competent or experienced at the
allocated task than assumed or they may be in political or power struggles. But the high-
visibility of SCRUM allows us to deal with these problems. This is the strength of the
SCRUM method manifested through eeum Meetings and theSprints.

Difficulties in grouping backlog for a sprint may indicate that priorities are not clear to
management or to the customer.

The method is not suitable for people who need strong guidance.

14

Backlog

Context
(FROM : Scrum Meetings, Sprints)

Y our are anyone connected to a software project, or any other project that is chaotic in
nature that needs a information on what to do next.

Problem

What is the best way to organize the work to be done next at any stage of the project?

Forces

Project plans captured in Pert charts or Gannt charts often try to capture tasks to be done
apriori, but they often fail in their implementations, because they lack flexibility. Tasks
are pre-allocated time in Pert or Gant charts but their priorities and number grow or
dimish as required in real projects, and therefore they are not good tools to use where the
number of tasks changes drastically over time

Not having arepository of tasks in any shape or form simply translates into project
failure. There must be some sort of project control.

Solution
Use a Backlog to organize the work a SCRUM team.

The Backlog is a prioritized list. The highest priority backlog will be worked on first, the
lowest priority backlog will be worked on last. No feature, addition, enhancement to a
product is worth fighting over; it is simply either more important or less important a any
time to the success and relevance of the product.

Backlog is the work to be performed on a product. Completion of the work will
transform the product from its current form into its vision. But in SCRUM, the Backlog
evolves as the product and the environment in which it will be used evolves. The
backlog is dynamic, constantly changed by management to ensure that the product
defined by completing the Backlog is the most appropriate, competitive, useful product
possible.

There are many sources for the backlog list. Product marketing adds work that will fulfill

their vision of the product. Sales add work that will add new sales or extend the
usefulnessto the installed base. Technology adds work that will ensure the product uses

15

the most innovative and productive technology. Development adds work to enhance
product functions. Customer support adds work to correct underlying product defects.

Only one person prioritizeswork. This person is responsible for meeting the product
vision. Thetitle usually is product manager or product marketing manager. If anyone
wants the priority of work changed, they have to convince this person to change that
priority. The highest priority backlog has the most definition. It is also prioritized with
an eye toward dependencies.

Depending on how quickly products are needed in the marketplace and the finances of

the organization, one or more Scrum Teams work on a product’s backlog. AsSarum

Team s available (newly formed or just finished@arint) to work on the backlog, the

team meets with the product manager. Focusing on the highest priority backlog, the team
selects thaBacklog that the team believes it can complete with8pant iteration (30

days). In doing so, the Scrum team may alter the backlog priority by selecting backlog
that is mutually supportive, that is, that can be worked on at once more easily that
waiting. Examples are multiple work items that require developing a common module or
interface and that make sense to include inSpniat.

The team selects a cohesive group of top pri&akgklog, that — once completed — will
have reached an objective, or milestone. This is stated Sptiiné¢'s objective. During
the Sprint, the team is free to not do work as long as this objective is reached.

The team now decomposes the selected backlog into tasks. These tasks are discrete
pieces of work that various team members sign up to do. Tasks are performed to
complete backlog to reach the Sprintobjective.

Resulting Context
Project work is identified dynamically and prioritized according to:
1) the customer’s needs, and

2) what the team can do.

4. Conclusions

SCRUM is a knowledge creating process with a high level of information sharing during
the whole cycle and work progress.

The key to SCRUM is pinning down the date at which we want completion for
production or release, prioritizing functionality, identifying available resources and
making major decisions about architecture. Compared to more traditional methodologies
the planning phase is kept short since we know that events will require changes to initial
plans and methods. SCRUM uses an empirical approach to development where
interaction with the environment is not only allowed but encouraged, changing scope,

16

technology and functionality are expected and continuous information sharing and
feedback keep performance and trust high.

When SCRUM is combined with other organizational patterns [OrgPatt], specially those
by James O. Coplien [Coplien95], it provides with adaptive, yet well structured software
development organization.

Their application also generates a strong culture with well-defined roles and
relationships, with meaningful and transcending rituals.

Acknowledgements

We would like to thank all of the SCRUM users and reviewers from which we have
received feedback over the years. Also, we thank the all of the members of the Chicago
Patterns Group that attended an early review session of the Scrum Meeting pattern
(especially Brad Appleton, Joe Seda and Bob Haugen). Finally we thank our PLOP98
shepherd, Linda Rising, for providing us comments and guidance to make our paper
better.

(Personal acknowledgement from Mike Beedle.) I'd like to thank both Jeff Sutherland
and Ken Schwaber for adapting the SCRUM techniques to software in the early 90s, and
for sharing their findings with me. SCRUM has made a significant contribution to the
software projects where | used the technique.

References

[Beedle97] Michael A. BeedleOOherentBPR — A pattern language to build agile
organizationsPLoP '97 Proccedings, Tech. Report #wucs-97-34, Washington
University, 1997.

[Coplien95] James O. Coplien and Douglas C. Schmidt, Pattern Languages of Program
Design(A Generative Development-Process Pattern Langyagielison and Wesley,
Reading, 1995.

[Goldratt90] Eliyahu Goldratt, Theory of ConstraintsNorth River Press, Great
Burlington (MA), 1990.

[Holland95] John Holland, Hidden Order — How Adaptation Builds Complexitiglix
Books, Addison-Wesley, Reading MA, (1995).

[Holland98] John Holland, Emergence — from chaos to ordelelix Books, Addison-
Wesley, Reading MA, (1998).

[Nonaka95] I. Nonaka and H. Takeuchi, The Knowledge Creating Company
Oxford University Press, New Y ork, 1995.

[OrgPatt] Org Patterns web site:
http://www.bell-labs.com/cgi-user/OrgPatterns/OrgPatterns?Project ndex

[Schwaber97] Kenn Schwaber's, SCRUM web page

http://www.controlchaos.com

[Schwaber97-2] personal communication.

17

[Senge90] Peter Senge, The Fifth Discipline - The art and Practice of the

Learning Organization, Doubleday/Currency, New Y ork, 1990.

[Sutherland97] Jeff Sutherland, SCRUM web page:
http://www.tiac.net/users/jsuth/scrum/index.html
http://www.jeffsutherland.org/scrunvindex.html

[Weinberg97] Gerald Weinberg, Quality Software Management — Vol. 4., Anticipating
Change Dorset House, New Y ork, 1997.

18

