

Copyright ©2003 Poppendieck.LLC 1

Introduction
In the past, the customer was asked to define requirements, and then told to go
away for months while the technical people developed a solution. The focus of
customer activity then needed to be on getting everything right up front because
there would be no second chance.

This led to lots of over specification and waste.
Numerous studies have attributed high failure rates of software projects to

lack of involvement by the business people commissioning it. Agile approaches
recognize that the customer needs to be a business developer and expect the
customer side to make all decisions impacting business value just as software
developers are accountable for technical decisions. Agile methodologies bring
the customer and the software developer into close, ongoing contact so that they
can learn together

 What is the simplest way to address the customers business problem
 How best to deliver what is needed.
 How to deal with change over time.

This takes effective collaboration through rich bidirectional communication
and feedback. This communication happens mostly at the level of conversation
but there is need for a carefully selected set of practices to accommodate the
myriad of details which arise.

The Agile Customer’s Toolkit

Tom Poppendieck

2 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

Toolkit context
Most agile methodologies were articulated by software developers and they have
proven very effective for rapidly delivering high quality code that is flexible and
does what the customer needs as the customer understands their needs at the
end of a project. High ceremony, sequential methodologies, on the other hand
tend to be embraced by those who do not understand code but feel a need to see
progress at things they think they do understand, mostly documents. Agile meth-
ods try to deliver frequent increments of working software to these folks, some-
thing they can understand by actually using it, rather than investing in detailed,
comprehensive documents that deliver little value. Agile methods have proven
capable of very rapidly delivery of very high quality flexible code. However, they
have not devoted much energy to helping the customer side of the process work
out what they need.

The thinking tools I am recommending for the agile customer toolkit are not
new. They have been known and advocated by leading thinkers for years. Most
of the tools are agnostic about process context, fitting as well in a sequential ap-
proach as in an agile approach.

XP introduced one new tool, the idea of chunking requirements and planning
into user stories. The agile customer’s toolkit contains customer practices to find
and manage user stories covering features, behavior, and interfaces. I assume
the project is using Scrum or XP planning practices and assuming XP style devel-
opment practices.

Tool types
The thrust of this talk is to show how to apply these ideas in an agile context as
defined by the principles of lean thinking and exemplified by extreme program-
ming.

This paper discusses ten tools for agile customers in four categories.
 Decision tools are the foundation principles that guide application of all

the other tools. They state presumptions about the nature of complex
undertakings.

1. Lean software development principles1

2. Concurrent development

 Role tools describe how to organize and motivate the work of the project
team and to staff it with the necessary people

3. Team role structuring

4. Chartering2,3

 The Agile Customer’s Toolkit 3
 ©2003 Poppendieck.LLC

 Interface tools explain how the various roles on the team organize their
work and communicate with each other

5. XP customer and joint practices

6. User story based interaction with developers 4.5

 Story and customer test tools6 are for managing with the content of the
project itself and producing the software itself.

7. Ubiquitous domain language7

8. Role model – context, capabilities, conceptual models

9. Essential task model – intent / responsibility8

10. Interface content / navigation /behavior model

Decision Tools
Agile is a mindset, not a set of practices, rules, or tools. Agile focuses on people,
value, and flow to deliver customer value and minimize waste. Agile principles
guide team members in deciding what tools to pick for each task they face and in
deciding how to apply each tool. This paper is a short catalog of tools that belong
in an agile customer’s toolkit and includes a brief discussion of how each might
be important in an agile software development project.

Values, principles and practices
The practices people choose to employ on a project, either individually or collabo-
ratively, reflect both their skill set and the principles and values that guide their
application. By principles, I mean guiding ideas or rules for deciding. Practices
are specific things people do. The overall effectiveness of an organization de-
pends at least as much on its values and principles as it does on its skills at any
particular practices. What we need to understand is which values and principles
are most effective to the customer to ensure that a software project delivers
business value.

Tool 1: Lean principles
Lean principles were first developed in manufacturing, and then applied to prod-
uct development, logistics, and even to construction. There they frequently gen-
erate factor of two improvements in both productivity and quality. In June of
2003, Mary Poppendieck and I published, Lean Software Development, an Agile
Toolkit which presents lean software development and management practices as
22 thinking tools organized around the 7 principles of lean thinking.

1. Eliminate waste – only add value, not inventory.

4 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

2. Amplify learning – iterate.
3. Decide as late as possible – defer commitment.
4. Deliver as fast as possible – Pull value and eliminate delay.
5. Empower the team – train, trust, and lead.
6. Build integrity in – both customer perceived and conceptual.
7. See the whole – avoid sub-optimizing.
These principles are proven to foster effective collaboration among many dis-

ciplines in complex situations. All published agile methodologies are consistent
with these principles. These principles are simple rules that permit every project
participant who understands the mission of the project to make good decisions
about what to do next without explicit, detailed direction. They provide a theo-
retical context to enable effective tailoring to adapt published methodologies to
the needs of a particular project context. Mindfulness of these principles makes
the customer practices described in this toolkit agile, not the practices them-
selves.

Tool 2: Concurrent development. (Iterative and Incremental)
It is critical to apply lean ideas at the level of
principles rather than practices. If one
looks to manufacturing practices for guid-
ance on software practices, one makes
SERIOUS MISTAKES!

When lean principles are applied to
product development, they generate an
approach (Figure 1) known as concurrent
development. Concurrent development of
the mission, the requirements, and the
implementation permits the team to amplify
learning, discovering from frequent feedback
what the impact of each decision will be and to
adjust. Concurrent development permits the
team to decide late when it has the best understanding it is going to get to
achieve the best fitness for use it can within the constraints of the project. The
fundamental responsibility of management and project leadership is to staff the
team and shape the work to make inevitable ongoing rich, two-way upstream /
downstream communication and involvement. At a minimum, this means reli-
able, daily contact, at best full collocation so discussion and negotiation of direc-
tions can occur at any time.

Figure 1 – Concurrent Develop-
ment

 The Agile Customer’s Toolkit 5
 ©2003 Poppendieck.LLC

Figure 2 - Three Legged Stool

Role Tools
Developing software is too complex to be undertaken using a static recipe. Most
projects need people with diverse skills, experience and knowledge able to think
and adapt their practices to achieve their project goals. The interplay among ca-
pability, responsibility and collaboration is what makes it possible for complex
projects to succeed.

Boundaries and emergence.
The study of complex adaptive systems teaches that adaptive behavior will
emerge only if the system has effective boundaries. Project success depends on
proper attention to four critical boundaries:

1. The project’s charter defines at a high level the boundaries of what is in
the project intent and what is the context the project must accommodate.

2. The charter also sets boundaries on the resources committed3 to achieve
the project mission including staff time, funding, and completion time-
frame.

3. The staff allocation boundary should include members with all the skills,
knowledge, and decision authority required to execute the project.

4. The communication boundary must extend to the entire project commu-
nity9. The project community needs to include all the people who influ-
ence or are affected by the project in addition to specifically allocated
team members.

Tool 3: A three legged stool.
The whole team is responsible for achieving the project mission specified in the
charter. While everyone with something to contribute can participate in discus-
sion of any topic, align authority to decide an issue in the end on competence.
Three categories of roles (Figure 2) can be distinguished within the project team.

1. Some team members need to be able to establish and maintain the
project mission and context, to provide
resources and leadership, to remove
barriers, and to communicate with parts
of the project community outside the
team. These are manager roles.

2. Some team members need to deter-
mine specifically what needs to be done
to deliver the business value the project
is chartered to deliver. These are
customer roles. Team members in cus-

6 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

tomer roles must have the business expertise and authority to decide
feature details and priorities.

3. Some members of the team need to actually delivery the software that
does what is determined to provide value. These are developer roles.
People playing developer roles have the competence and responsibility to
make all technical decisions about how to best implement the features.

All three roles are necessary to deliver project value. The number of people
will vary with the skills an experience of each team member and the nature of the
project. (Depending on the size of the team, their domain experience, and the
nature of the project, team members may fill roles in more than one category.)

Responsibilities.
Each leg of our stool is vital to project success. Agile methodologies mostly focus
their advice on practices for the developer leg and on the seat that is composed
of joint practices describing how the whole team works together. The responsi-
bilities of the customer side are clear and numerous but supporting practices are
not provided and this has caused more than one agile project to fail to accom-
plish its mission. This articulation of responsibilities is in reaction to the inade-
quate or ineffective participation of business/customer side which has repeat-
edly been identified as a primary cause of software project failures.

An agile manager will not direct the work but will remove all impediments to
the teams doing the work and will either lead the team or support a leader who is
on the team. A key to managing an agile project is to set it up so the whole team
can really work together effectively. Lean principles require eliminating structural
waste and maximizing opportunity for feedback.

 The whole team sits together for the duration of the project so they can
plan, communicate and adapt as they learn what works for them for this
project. – amplify learning and eliminate the waste of waiting

 The whole team succeeds or fails as a team, not as individuals. Measur-
ing or rewarding individuals will destroy collaboration. – See the whole,
don’t sub-optimize. The members of the team will apply their respective
technical or business skills and practices from their disciplines to achieve
the purpose of the team and learn from each other.

 The Agile Customer’s Toolkit 7
 ©2003 Poppendieck.LLC

Tool 4: Chartering
A software development project is the work
of a community contributing a variety of
skills and having interests in the outcome.
The community includes everyone on the
team as well as others who can affect or are
affected by the project.9 The interests of all
members need to be aligned and kept
aligned through a shared understanding of
the project purpose.

Every member of the team must con-
tinually assess the state of the project and
how they each can most effectively con-
tribute to its progress if they are to collaborate
effectively together. Each contributor’s focus on the shared purpose (Figure 3)
will be different depending on their individual capabilities and goals. A contribu-
tor’s passionate pursuit of the projects purpose depends on their clear under-
standing of what’s in it for them

Tradeoff alignment.
A critical boundary dimension is what qualities the final result must display. Typi-
cal qualities include, features, completion date, usability, defect level, perform-
ance, availability, and cost, either monetary or in terms of dedication of people to
this effort rather than some other activity. Some project will have other quality
dimensions.

A key decision that will shape the project is which ONE dimension is primary,
which is secondary, and which will the authorizing sponsors accept tradeoffs in
order to achieve the priority 1 or 2 goals.

All project stakeholders must come to agreement on which project attributes
are number 1 and 2 and which have more flexibility. As business context
changes, this can be revisited but it must be communicated immediately to the
entire team as it will affect how they spend their time. (See Table 1)

Product data sheet.
The tradeoff matrix is only one part of a guiding charter for the team. The team
leadership generates a Product Data Sheet (PDS)2 at the beginning of a project
to

• Negotiate boundaries among the stakeholders.

Figure 3 - Team Perspectives

8 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

• Identify the people and other resources that must be allocated the team.
The PDS is shared with all members of the team and defines the boundaries

within which the team makes tradeoff decisions in the course of the project. To
ensure consistent decisions immediately communicate any changes to the PDS
to the entire project community.

A PDS must be kept to ONE PAGE. A longer document will not be used or
useful. If you think you need more space, you do not understand what you need
well enough to proceed. Keep working and thinking until you can describe what
success means for this project concisely in a way that all stakeholders agree to.

Table 1 - Product Data Sheet.
Project Mission Statement

Clients / Customers

Prioritized Features

Project Context Diagram3

Project / Product Leaders:

Authorizing3 Sponsors:
Mission Tradeoff Matrix

Quality Di-
mension

Top
Priority

Next
Priority

Accept
Tradeoffs

Dimension’s
Target Value

Scope x (Features, Perf)

Schedule x

Low Defects x

Resources x
Client Benefits

Committed Resources3

Key Issues / Risks

Key Events3

Interface Tools
The principles and product data sheet guide project participants in how to decide
what to do but they do not provide a template for interaction in pursuit of the pro-
ject mission. This next batch of tools offers strategies for working together as ef-
fectively as possible.

The most fundamental interfacing truth is that face-to-face conversation is by
far the most effective way to communicate and collaborate within and among
roles because of the instant multimodal feedback available. Face-to-face col-

 The Agile Customer’s Toolkit 9
 ©2003 Poppendieck.LLC

laborators may choose to write things down but the meaning of their documents
will rest on memory or their conversation.

Tool 5: XP Practices
The developer side of an agile
team will adopt some version of
the extreme programming
development practices. (Figure 5)
These practices are very effective
together and very satisfying to the
developers. They enable the de-
veloper side to rapidly produce
very high quality flexible code.

These practices are the engine
that determines what is possible
for the team to accomplish. They manifest most of the principles of lean thinking
in the programming context.

This development engine determines how fast the project is capable of going.
The developer side of an XP expects to deliver as fast as possible consistent with
it’s commitment to build integrity in and expects customers and managers to do
everything possible to avoid slowing them down. This means never making the
developers wait for decisions or information. Waiting is a form of waste to be
eliminated.

XP specifies 4 responsibilities of the customer side of an agile project team.
1. Tell stories – describe what the software must do to provide value. This is

primarily conversation.
2. Define tests that demonstrate what each story means precisely. These

should be automated.
3. Decide which stories to do next. The customer defines what is valuable either

to directly provide benefit or to amplify learning about what will work best.
4. Work iteratively and learn as the project progresses.

Entire books have been written about many of the developer side practices -
pair programming, test driven development, refactoring, continuous integration &
unit testing, planning game, and a book about user stories is in press; no book
has more than 11 pages about customer practices.

THAT is what customer side practices are about.
• Work iteratively, breadth first with gradual refinement of story details to

provide a gradually narrowing context for decisions.

Figure 5 - Extreme Programming Practices

10 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

• Work iteratively DEPTH first to rapidly deliver working software to get
rapid feedback from the most important remaining work.

• Develop a common team vocabulary to discuss the project with the de-
velopers based on the language of the DOMAIN.

• Develop a task centered organization for the stories you pass to the de-
velopers based on user-goal centered use cases

• Develop a UI that will be highly usable for those who using the applica-
tion.

Tool 6: User Stories
Stories are the primary tool the customer side and the developer side use to or-
ganize their communication with each other. They are the final “output” of the
customer practices. All the rest of the work the customers do is focused on gen-
erating stories and their confirming tests. The use of stories rather than use
cases or “system shall…” type requirements for communicating what is needed is
a big deal. It permits the developer side to reliably deliver requested features in
a predictable time which builds trust and empowers the team to control its
course.

Customer side team members are responsible for choosing stories to cover
everything they care about. During release and iteration planning they need to
explain the details well enough to enable the developers to do useful estimates
so the project can proceed predictably. During the iteration they in which ask the
developers to implement the story they need to explain or work out concepts,
business rules, variations, interfaces and exact results expected for each alterna-
tive path through each story. All these detailed decisions get documented twice,
once in the code written by the developers and once in detailed tests the cus-
tomer defines to record the decision.

Story anatomy.
User stories have three parts:

1. The Card which is a token naming the topic and a few key facts about it.
2. A Conversation between developers working on estimating or implement-

ing the story and one or more customers with the expertise, judgment,
and decision authority to specify or decide the details. This conversation
will be fairly general when planning and quite detailed when the story is
being coded.

3. Confirmation in the form of customer tests that specify exactly what re-
sults are expected. These will preferably be automated executable tests
which may be prepared by the customer side using a framework such as

 The Agile Customer’s Toolkit 11
 ©2003 Poppendieck.LLC

FIT or ordinary code written by the developer side of the conversation. In
either case, the customer specifies the test cases that prove the story is
correctly implemented from the business perspective. Early in the con-
versation, a few key tests may be outlined on the back of the card, later,
detailed thorough tests are needed for everything the customer cares
about. These tests amount to executable specification the application is
guaranteed to satisfy.

User stories are the primary unit of commitment between the customer side
and the developer side. The stories are planning units for developer side work.
They are used for planning the order in which things the customers side values
will be done.

The story card.
The appropriate amount of story detail fits on a 3x5 inch or 4x6 inch ruled index
card. If you run out of room on a card, use a SMALLER card. The idea is to be
brief. The card is not the place to capture details. The card is a signal to discuss,
organize, or to work on a feature and not a means of recording all the details. If
you need more space, you either need to break down the work into smaller
pieces or create some sort of supplementary document. A card will have a title to
facilitate discussion; one or a few sentences for a brief reminder what is wanted;
and an estimate by the developers of the relative effort to implement it. The
back of the card is sometimes used to note a few sample customer tests.
Teams have experimented with using various computerized representations of
story cards but the consensus among XP teams is that handwritten cards are
best, especially during planning activity. They are easy to tear up and rewrite.
They are easy to sort into priority order and arrange into stacks by iteration or any
other criteria. They are easy for developers to pick up when they begin work on
one and post on a board when they are done.

Story size.
XP strives to build trust between the developer side and the customer side by re-
liably and regularly delivering valuable software. Size matters here.

The value is ensured because the customer steers by choosing which stories
to do each iteration. Each story must be small enough that the developers have
confidence in their estimates of how long it will take to do. If they cannot esti-
mate, they ask the customer to explain more about what the story covers and
possibly break it down into smaller, individually valuable stories that they can es-
timate and which the customer may prioritize separately.

12 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

This combination of trust, predictability, and business value is difficult to
achieve. Developer practices enable the developers to do their part. Customer
practices and joint practices enable the customers to do theirs.

Story integrity.
A place to start the effort of creating a system perceived to have integrity is to
understanding the needs of the people who will be using the system and of the
business process the system will support. The business process determines the
value and the user characteristics determine the usability issues. The business
process usually depends on the system to supply, capture, update, or manipulate
certain sets of information subject to applicable business rules and policies. A
person able to use the system effectively must know or be able to easily recog-
nize the actions to take to capture or access or modify information as required
for the transaction the system is supporting for them.

Usage-centered domain-driven integrity.
The agile strategy to ensure
that a project delivers real
business value is concurrent
development. There are two
related aspects to product
integrity, conceptual and
perceived (Figure 6).
Conceptual integrity refers to
the internal structural qual-
ity, understandable archi-
tecture, and code maintain-
ability that the development
team builds in to the product
by applying XP engineering practices.
Perceived integrity is the responsibility of the whole team and includes:

• Suitability for effective and efficient use by the end users.
• To achieve the customers and product or process owners business goals.
• In a manner that correctly implements the definitions, business rules,

and constraints articulated by the subject matter experts.
Perceived integrity arises from rich continuous communication between

those who need the system to carry out their responsibilities and those who build
the system. This communication can only happen if the two sides share a com-
mon language to speak about the system in. This language needs to be based

Figure 6 - Conceptual and Perceived Integrity

 The Agile Customer’s Toolkit 13
 ©2003 Poppendieck.LLC

on the language of the user domain but shaped to adequately describe the parts
of the system visible to the users. In summary,

• The vocabulary of communication is the domain language.
• The unit of work and planning commitment is the user story.
• The unit of business process value is the use case. Many user stories will

be derived from and organized by use cases.
• The unit of specification is the customer test. Customer tests may cover a

single story or several stories in the same use case.
• Other stories are derived from the UI content and navigation models

which are the means of ensuring usability.

Story Telling Tools
Our first six tools have addressed how
the team makes decisions and how they
can organize their work to build mutual
trust via effective communication. What
remains is to discuss practices that help
the customer side team members to de-
cide what stories to tell and how to
prioritize them. Through discussion,
informal modeling, and coding, the

whole team develops a domain
language to use to tell stories about
what will deliver the business value the team is chartered to enable. They use
models of the characters, their goals, and the tools and information they will em-
ploy to reach those goals to identify their stories. In short, they do usage cen-
tered design to find the stories. (Figure 7)

Story Perspectives.
Achieving integrity is a complex undertaking
because it results from the interaction of at
least three perspectives (Figure 8):

• People and their roles, context and ca-
pabilities,

• Business process goals, policies, and
workflow, and

• Domain entities, business rules,
policies, and constraints.

Figure 8 - Interaction Perspectives

Figure 7 - Realizing the Mission

14 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

User stories need to cover all these perspectives. Start with whichever is
most important; usually this is the people. Then iteratively address all three con-
currently to refine and detail each perspective as you learn.

Model the roles people play in relation to the system, noting their capabilities,
the demands on them, their knowledge level, their likely level of familiarity with
the application itself. Use one index card for each role. (This is not a big model!)

Then, for each role, identify the tasks each will use the system for. Write
down the goal of each task, one goal per index card with a note as to which role
owns the goal. This is the start of a use case model8 and the origin of many story
cards.

Then, for each goal, identify the important concepts that the user is going to
expect the system to know about, remember information about, and enforce
rules and relationships about and write each concept on an index card. Most
concepts will be used by several goals. This is the start of a domain model7.

Tool 7: Domain Language
A deep shared vocabulary used by the entire the team to discuss its work is the
foundation of effective story telling. The language of the domain is the best
metaphor for thinking about the application in, especially when discussing it with
the customers and other stakeholders. After all, the customer already knows the
domain terminology and domain concepts need to be represented by the applica-
tion for the user to manipulate. Policy and business rules will be described in
terms of domain terms.

Every team needs to create a common shared domain language that every-
one on the team uses with the same meaning and expectations as an agreed
upon way to structure their shared knowledge. This language simultaneously ex-
presses the developers deepening knowledge of the domain and the customers
growing knowledge of the solution they will use to create business value. The
language will evolve and deepen as the application grows, new topics are dis-
cussed and more powerful ways of understanding are discovered7.

The customers write stories and tests covering the domain entities the sys-
tem has to present to the users, the relationships among them, the business
rules and policies constraining their behavior and more and these have to be un-
derstood by the developers in the same way they are by the customer side.

Selective abstractions.
While we advocate the language of the domain, it turns out that the language of
the subject matter experts (SME’s) is not ultimately satisfactory because it is both
too nuanced with context and not precise enough. Developers and analysts can-

 The Agile Customer’s Toolkit 15
 ©2003 Poppendieck.LLC

not be expected to understand this language the same way an SME would. In any
case, the software will never capture the full meaning of all the domain terms it
deals with.

The key to a successful project ubiquitous domain language10 is a selective,
mutually agreed to abstraction. The team needs to choose a set of meanings
that are consistent with the customer use of the terms but have a precise con-
strained meaning in the application. These entity concepts should be the actual
business objects contained in the code so that their attribute and behaviors can
match customer expectations exactly without need for complex translation.

This language emerges through refactoring of the code and refactoring of the
use cases and interface design as both sides collaborate to define and create the
application. It reflects both the SME’s deep domain insights and the developer
and analyst implementation insights. It may well contain invented application
concepts that are not common domain usage but make the application intelligi-
ble and learnable.

Domain language model.
The domain language is not an analysis model because it is not implementation
free. Neither is it a design model because it does not include the full architecture
needed to deliver the application but only touches the ideas that the customers
directly need to know about and validate.

The whole team evolves this language which is directly implemented as the
business object layer of the application. The model is implemented in code; its
behavior is tested in customer tests. It is generally not recorded in formal docu-
ments outside the code and tests because it is continuously refactored to im-
prove its clarity and effectiveness for addressing the goals of the application.

The team will anchor conversations with informal UML diagrams whiteboard
style including as needed class diagrams, interaction diagrams, and state dia-
grams. These may be temporarily noted on index cards or snapshots of white-
boards. Details are recorded in application code and customer test code.

It is common for a team to start a project by implementing the basic business
domain objects and their basic behaviors before investing in the user interface.
This gives the customer side sometime to work on designing the interface. To
design the interface, you need to understand the users’ goals in some detail.

Tool 8: Role Model
The developer side needs stories but the customer side usually has to start with
understanding the people who will be using the system. The people have charac-
teristics and work in contexts that constrain the user interface and workflow de-

16 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

sign options. The people have goals and mental models of their domain, respon-
sibilities and business goals. So we start with people tools.

Role Modeling from Usage Centered Design supplies the tools necessary to
understand the people who will be using the system to create business value.
Lean principles and concurrent development suggest that the model does not
need to be complete up front but can be detailed when and to the extent it is
needed.

The starting point is a simple list or stack of cards with one role for each
category of expected users.

Know the actual users.
The customer side members of the project team are normally developing a new
or modified business workflow in addition to a new software application to sup-
port part of that workflow. The business processes that the new workflow im-
plements creates the value the project delivers. Usability problems, which can
dramatically reduce that potential value can happen if the customer side does
not understand the experience the users will have using the new application in
their new work context.

Role modeling starts by identifying who will be using the system. A person
able to use the system effectively must know or be able to easily recognize the
actions to take to capture or access or modify information as required for the
transaction the system is supporting for them.

Role inventory.
If you are familiar with use case modeling, you know the concept of actor. A role
is an actor who happens to be human. Actors which are external systems need a
completely different style of analysis for their interfaces. A role is not a job de-
scription but rather a type of use of the system. E.g., writer, editor, reviewer of a
word processing application.

Record each role on an index card so you can sort, organize and relate them
by importance, by similarity, or other characteristic. Do not hesitate to tear up
role cards and rework them as you learn more.

Role description.
The standard practices of usage centered design support a focused analysis of
the factors that determine the characteristics of a role which guide creation of a
usable interface. This analysis probably does not need to be done up front and
the extent to which it needs to be done at all will vary from project to project. The
interfaces are probably not the first components to be built. The team can defer

 The Agile Customer’s Toolkit 17
 ©2003 Poppendieck.LLC

investing in detailed role analysis until the iterations in which interfaces for those
roles are defined.

Role priority.
Not all user roles will contribute equally to the net return on the investment made
in the new application. Satisfying the needs of the high priority roles is usually
the most valuable place to begin implementing the new system. Understand and
invest energy and thought in making the system highly suitable for use by the
high priority roles. You can afford to pay less attention initially to the lower prior-
ity role needs.

The concept is breadth first inventory of roles and depth first concentration
on those with the largest impact on the success of the project.

Role cards may become or may generate user story cards. For example, A
story might describe authorizations each role gets to use various system abilities.

Tool 9: Essential Use Case Model
People use the system to achieve some business purpose. Once we understand
who will be using the system we can explore just what each important role needs
the system to be capable of doing. While role modeling concentrates on making
the new application fit the people executing the tasks to enable them to use it
quickly and with low error rates, use cases concentrate on the tasks and transac-
tions the people are interacting with the system to achieve.

Goals of each role.
Create a goal card for each goal an actor/role expects the system to help them
achieve. After the user playing a role communicates an intent, the system is re-
sponsible to know how to respond, to remember what was input, to apply domain
rules, to create what was requested, to communicate with some party or what-
ever the actor expects. These are all things the customer will need to write sto-
ries, hold conversations, and write tests about.

A user’s goal may or not become a user story. If a team has lots of experi-
ence in a domain, the goal may be all they need for a story. Some goals will need
to be detailed as use cases, and a broken into a collection of user stories and
tests. The customers may do quite a bit of organizing, redefining, and detailing
these goals before the software is done. The idea at the beginning is simply to
identify a set of goals to enable some initial planning and prioritizing and to iden-
tify a place to start.

18 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

Goals use domain language.
Each user goal is an intension the user expects to interact with the system to ac-
complish. Each goal should be an active verb phrase. A verb phrase includes
minimally a verb and a direct object that the verb acts on. (“Take food order”,
“Schedule order pickup”, “Make service appointment”). The object of or target of
the action verb will usually be a domain language concept - (food order, order
pickup, service appointment.) Communication within the customer side and with
the developers depends on everyone on the team having the same understand-
ing of the domain concepts the system is responsible for dealing with.

These concepts are the fundamental vocabulary of the users and need to be
also the fundamental business vocabulary of the application. To ensure this, cre-
ate a model of the domain concurrently with your creation of the goal model. Re-
cord each concept on an concept card. Include a brief description of what the
team agrees to mean when that concept is used. As you refine your stack of
goals, maintain your stack of domain concepts.

So now we have role cards, goal cards, and domain concept cards. Focus on
identifying the really important cards that will make or break the application not
getting a complete set of cards or on details.

Use cases as a customer tool.
Use cases can lead to analysis paralysis if the customer team does not know
what it is doing. The key issues are getting the goals and steps at the right level
of detail and leaving out all non-behavioral detail. Decide details as late as pos-
sible to minimize the cost of change so the team can try many alternate solutions
to amplify learning. This permits the team to see the whole and understand rela-
tive priority and value.

A use case is not a story. A story is about something the developers are
asked to build and a use case is about something the users intend to accomplish
by using the system to manipulate domain objects. Nonetheless, use cases can
be very helpful to the customer in generating stories, discussing the details with
developers, and defining a good set of tests that cover all the variations the cus-
tomers care about.

Goal levels.
The hardest part about identifying the goals of a role is to get the granularity
right. There is a continuum of possible levels of detail. Goals live at three levels.:
summary, user-goal, and sub-goal. The user-goal level is the one the majority of
your use cases should be at. If a goal is at the user-goal level than:

 The Agile Customer’s Toolkit 19
 ©2003 Poppendieck.LLC

• How often an actor does it is a measure of how much business value the
actor has produced… Logging in is clearly not at this level.

• The goal is accomplished (or abandoned) in a single session. The user
would start up a session with the system to achieve the goal and could
shut it down when it is complete

Of course, goals form a hierarchy and later you may well break down goals
into steps either

• To explain what it means to accomplish the goal,
• To factor out common or complex details, or
• To break down a use case into stories developers can estimate reliably.

Goal hierarchy.
The goal is to keep most of your use case goals at user-goal level. Sometimes you
will need to factor out common or details steps into sub-goal level goals. A few
use cases will be useful at summary levels which tie together a collection of user
goals into an overall business process that transcends a single user interaction
with the system.

Of course there is actually a continuum of levels of goals. For each use case
with a goal at some level the steps of the use case will be at a lower level. The
goal is why the actor is interacting with the system and the steps explain how the
interaction takes place.

Prioritize goals.
With less than a week of work, the team will have dozens of goal cards and sup-
porting role cards and domain concept cards. The developer side needs the first
batch of stories soon. Which ones to detail first? -- It’s best to start with the
most important ones which are those that deliver the most value. A key reason
for keeping the goals on cards is to support planning and estimating. An effective
strategy is to sort the tasks based on a variety of criteria including:

• By how often they will be done
• By importance to project success
• By developer estimate of technical risk
• By developer estimate of size
Given all this information, the can order the cards into MoSCoW piles
• Must Have – Do first, top priority, the system is not worth having if these

goals are not supported.
• Should have – Important, System usability or performance would be im-

pacted if these goals are not supported.

20 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

Check Account Balance
Account Holder Intent ATM Responsibility

1. Identify Myself 2. Authenticate user
 3. Present Accounts

4. Select an Account 5. Display Balance
 6. Present Options

7, Request Reciept 8. Print Reciept
 9 End Session

10. Take Reciept

• Could have -- Convenient, nice to have features that would benefit some
roles or some situations but work arounds exist.

• Won’t Have -- not needed for this project. Discard pile.
If the goals are too large for the developers to estimate risk of effort

confidently, the customers will have to break them down into stories that are
smaller. They may do this be expanding the goals into more detailed use cases.

Refine and refactor tasks.
Next the customer selects the goals/stories that will fit into the objectives allo-
cated for the first release and to start investing in some details for how the user
goals will be realized.

A story card is supposed to have a few sentences describing what the story is
about. For stories about user goals, start with essential use cases6. Essential
use cases will usually fit easily on the front
of an index card as they identify a se-
quence of user intents and consequent
system responsibilities. It is common to
use a two column format. The essential
style leaves out most of the detail com-
mon in move verbose styles including UI

details, domain and policy details, vali-
dation details, etc. It focuses only on
actor intent (what result does the actor intend to achieve?) and system responsi-
bility (what must the system do to respond to the actors communicated intent?)
and the conditions that these create.

Actor intent.
The actor’s intent is what the actor expects to accomplish from an interaction
step. Each intent is a lower level goal contributing to the use case user-goal. Ex-
press the intent as a verb phrase without conditionals. The system implicitly will
be responsible for offering some kind of interface that will permit the user to ex-
press the intent. These system responsibilities will normally be allocated to some
user interface objects invoked by the current active workflow controller.

System responsibility.
The second column of the essential use case records the responsibilities the sys-
tem must fulfill in response to the users expressed intent. The format is again a
verb phrase without conditionals.

Figure 9 -Essential Use Case

 The Agile Customer’s Toolkit 21
 ©2003 Poppendieck.LLC

Responsibilities of the system are often passed down the objects in the busi-
ness domain layer though some of them may be handled at the controller level if
they simply invoke another window. Typical system responsibilities include pro-
viding some output to the user, changing the internal state of some business
domain object, or setting up the context for the next user interaction.

Refine goals into use cases.
Use cases need to be refined in two
situations. First, if a use case is too
large to be a suitable story, the
individual scenarios of a use case are
often a good way to break it down. The
main scenario becomes one story, one
or more of the alternate courses
become additional stories, perhaps
with different priorities. The second
reason to refine use cases is to

discover a full set of customer test
cases. The customer is responsible
for testing every situation they care about. Every step of the use case is a poten-
tial case where something can go wrong and either the user or system must take
some action other than the normal courses. If the customers want these excep-
tions covered, they must define tests specifying what should happen.

This “striped trousers” approach (Figure 10) is detailed in Alistair Cockburn’s
Writing Effective Use Cases book8. The two keys to use this tool in an agile proc-
ess are:

1. Keep the steps in essential form, deferring details to the conversation.
2. Recognize that the preconditions are test setup, the scenarios are test

scripts, and the post conditions are the expected test results.
Thus “Full Dress” use cases identifying alternate success and failure scenar-

ios, pre-conditions, guarantees and stakeholder interests are actually a test dis-
covery technique that helps the customer side be confident that all cases they
care about are covered. Of course you only do full dress at the last minute as
preparation for or as an outline for your conversations with the developers and as
a check to see that you have written all the tests you care about. The use case is
a working document, NOT a deliverable!

Figure 10 - Main & Alternate Scenarios

22 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

Essential use case template.
I offer this use case template as
a reminder of the some things to
focus on to ensure your
conversation and tests cover all
variations implied in the striped
trousers (Figure 11). The
preconditions and branch
conditions are often the test
setup steps. The scenario steps
are the steps in the test. The
post conditions and stakeholder
interests are the test results the
system is responsible for

producing. The number of tests
is at least the number of
alternate scenarios in the use case.

If you write out use cases, keep most of them down to one page. If you need
more space, consider breaking out some steps or scenarios into another use
case. The use case is not a deliverable and should not be polished. Focus on
the completeness and quality of the tests you derive from it instead.

A use case is sometimes the same as a story if it is short enough. Some-
times each scenario is a story. Other times a scenario must be broken down into
several stories. When you break up a use case into several stories, you might
want to note which use case a story came from to help remember the context
and testing considerations for each story. In any case, remember that stories
and use cases serve different purposes. And not all stories will come from use
cases. Some will describe business rules and policies, other will request user
documentation or specify response times or integration with a particular existing
database for example.

Tool 10: Interface Content Model
Usage-centered design, of course, is most focused on creating effective inter-
faces. None of the agile methods have anything meaningful to say about the
topic. They all trust that a user interface can emerge from repeated refactoring, a
rather dubious expectation in cases in which tasks are complex and the people

Goal:
Actor:
Preconditions

Main Success Scenario
 Actor Intent SuD Responsibility
1 2

Alternate and Extension Scenarios
Actor Intent SuD Responsibility

Minimal Guarantees

Success Guarantees

Stakeholder Stakeholder Interest

Figure 11 - Essential Use Case Template

 The Agile Customer’s Toolkit 23
 ©2003 Poppendieck.LLC

who will be using the application are significantly different from the people build-
ing it.

While the engineering practices of XP will enable user interfaces to be modi-
fied significantly, even quite late in the development process, it must be admitted
that refactoring users is not viable. Once an initial release is put into production
in the hands of a significant number of end users, they will rapidly develop profi-
ciency via muscle memory that will not be easily relearned without a significant
period of disruption.

The idea is to get the look and feel conventions and overall navigation of the
application defined by the end of the first release so the visible interface, at least
will not need to be updated. Deferred detailed design of individual screens and
use cases until the iteration in which they are implemented.

User interface.
The interface tools are listed last because they tie together the domain language
concepts and the use cases. They need to be done concurrently with the other
models.

User stories are not the proper unit for addressing the user interface. Users
interact with the system to achieve user-goal level use case goals and the user
needs to figure out how to accomplish each goal and each alternate approach to
getting there as the situation demands. A good UI design requires understanding
of the user’s context, workflow, and overall goals which are not covered by any
one particular story.

Organize user tasks.
User interface design is a customer responsibility which means that the UI de-
signer is a member of the customer side of the team. Usage-centered design
teaches how to proceed from the domain concept model and use case model to
an interface model. Having use cases written at the user-goal level is the first
step in effective task clustering. Clustering use cases by role and workflow will
identify tasks that need to be near each other in the navigation map and easy to
find and to operate similarly.

Concurrent development means that the interface model, the use case
model, and the domain language are being developed at the same time and that
each influences the development of the other. There is no one best way to parti-
tion the user’s goals and sub-goals into use cases and there is no unique best
collection of domain language to use for the project. Rather, understanding
goals drives the interface partitioning and interface opportunities influence how
intents and responsibilities are allocated among use cases. Domain language

24 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

constructs need to be invented to express and integrate both the interface and
the use cases while capturing domain business rules and policies. This is an ac-
tivity where effective object thinking will pay rich dividend in simplicity and usabil-
ity. Conceptually, use cases, interface screens, and domain language concepts
are all objects and can be split, merged, have responsibilities and attributes
moved from one to another as needed to obtain a solution as fit for use as the
teams skill permits.

Essential UI cards.
Make rough paper prototypes, index
cards and post it notes work well
and are easy to modify cheaply and
quickly (Figure 12).

Start with the highest priority
use cases used by the most
important roles. Cluster the tasks
likely to be done as part of the same
workflow and use the same
business domain objects. Each
cluster is a candidate interaction
context. Each user intent is a potential command. Each interaction context (win-
dow) will present views of one or more domain language concepts. The views
present or accept some or all of the values associated with the domain concept.
Commands permit the user to generate events that the system is responsible to
respond to in some way. The command may be implemented as a button, a dou-
ble click, a selection, or any other appropriate idiom. If a cluster requires more
than one window context, split views and responsibilities and create a segment of
a navigation map with events that transition from one context to another.

Walk through the use case scenarios to see how easily each task and varia-
tion is accomplished for your initial design. Make changes until you achieve a
good balance. Then proceed to add on the next most important use cases and
continue the process.

You will create a collection of index cards and a navigation map that shows
which other interfaces can be navigated to from each.

The customer side should complete the navigation map and settle on the
look and feel issues for most of the Must and Should priority use cases before
the first release of the application.

Each interface card either becomes a user story card or attaches to the story
card it supports depending on developers estimate of the size of the implementa-

Figure 12 - Essential UI Card

 The Agile Customer’s Toolkit 25
 ©2003 Poppendieck.LLC

State Name State Description

When this window is in this state

Event {or Result} Produces System Response Next Window.State

tion effort. The navigation map and style conventions become part of the context
for all team estimates, just like crosscutting stories about security, logging, inter-
nationalization, etc. The team will probably implement the interface story in the
same iteration or soon after the stories associated with the corresponding use
cases.

Interface behavior tests.
Every story needs both detailed discussion of the details of how it works and of
tests to prove that it does. At this point all we have for the user interface is an in-
dex card and post it not prototype that does not even have specific fields or but-
ton names or labels. The discussion is the time to work these detailed appear-
ance issues out. The developers can probably generate the precise GUI by drop-
ping widgets onto a canvas as they discuss the window. They will get attributes
from the domain model…. Or will refine the domain model by allocating the at-
tribute needed on screen to the appropriate domain class.

Behavior is another issue entirely. The approach I use is to start by identifying
the states of each window. These may be empty, populated, no search results,
etc. Then for each state describe what the window is like in that state. For exam-
ple, what is enabled, disabled, blank or populated, defaulted… Finally, when the
window is in each state, what events will it respond to? E.g., commands, system
events, keyboard input, etc. (Figure 13)

Then, for each state construct a state chart with three columns. The first col-
umn lists the events. The second describes the response of the window and sys-
tem to that event and the third lists the resulting next window and state. (UML
state diagrams get far too messy to be useful for this!)

And there you have the tests for the interface stories. Each event / response
/ next window state is both a specification for the code and a precise specifica-
tion of the test. Since it is written at the event level automated tests can be
driven just below the actual interface view level.

Figure 13 - Interface State Behavior Chart

26 The Agile Customer’s Toolkit
©2003 Poppendieck.LLC

The Agile Customer Toolkit.
Lack of effective participation by the business side is on of the most regretted
shortcomings of IT projects in the eyes of CEOs today. Two important reasons
why Agile approaches work better than sequential approaches are:

1. They all insist on ongoing close participation of the business side in the
day to day progress of the project.

2. They embed principles of lean thinking to eliminate waste and enable ef-
fective collaboration within the entire team to identify and deliver busi-
ness value.

However, agile methodologies are uniformly weak in helping the customer
side deliver on their assigned responsibilities and numerous would be agile pro-
jects have failed as a result. In addition, none of the agile books or discussion
groups says anything about user interface design or usability beyond how to do
automated unit and functional tests of an interface.

The practices of Usage Centered Design and Domain Driven Design, applied
in a manner consistent with lean thinking fill this gap and the decision tools and
roles tools guide the business side in acting as a full partner in development pro-
jects..

1 Poppendieck, Mary and Tom, Lean Software Development - An Agile Toolkit, Addison Wesley (2003), See

also www.leanprogramming.com
2 Highsmith, James A. Adaptive Software Development – A Collaborative Approach to Managing Complex Sys-

tems. Dorset House (2000)
3 III, Immunizing Against Predictable Project Failure – Charters and Chartering as a baseline for Change, STQE

January/February 2001

4 Cohn, Mike, User Stories Applied for Agile Software Development Addison Wesley (in press) available at

www.userstories.com
5 http://www.xprogramming.com/xpmag/expCardConversationConfirmation.htm
6 Constantine, Larry & Lockwood, Lucy, Software for Use, Addison Wesley (1999), See also www.foruse.com

for More Agile approaches to Usage-Centered Design
7 Evans, Eric, Domain Driven Design - Tackling Complexity in the Heart of Software, Addison Wesley (2003)
8 The structure of the use cases is from Cockburn, Alistair, Writing Effective Use Cases, Addison Wesley

(2001), the essential style follows Constantine.
9 Schmaltz, Davit The blind man and the elephant, Berett-Koehler (2003)
10 Evans (2003) has written extensively about this ubiquitous domain language and how to achieve it in a agile

project.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

